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EXECUTIVE SUMMARY

Recently, both software engineers and the managers of software projects have become

increasingly more interested in the topic of software reuse. After a decade of research into

software reuse techniques, members of the software industry are seriously considering which tech-

niques should be incorporated into production projects. Of course, many approaches to software

reuse are still under research, and are not yet mature enough for production use.

This paper, on the other hand, is aimed at the professional software engineer who may

actually be designing reusable software. It concentrates on many of the technical problems

encountered when constructing reusable softy .te components today. This paper does not, how-

ever. focus on the general problem of reusable software design. Instead, it focuses on the Ada pro-

gramming language, and the problems software engineers may encounter when designing com-

ponents in this language.

This summary briefly describes the content of the remainder of this paper. It presents a

distillation of the main points made in the paper, some of which are not specific to the Ada

language and address software reuse in general. It also summarizes the technical contributions the

paper makes to reuse research, and concludes with a brief description of the significant technical

points made in the main body of the paper.

CENTRAL POINTS OF THIS WORK

The central theme upon ,which this work is built is a model of what reusable components

are, and what this structure shows about the process of software reuse. This model, the "3C"

model presented in Section 2, was originally conceived at the "Reuse in Practice" workshop held

at the Software Engineering Institute in June, 1989 [Tracz90a,

Because this model is still developing, this paper actually encompasses work in progress.

There is still little experimental evidence to support quantitative claims about the effectiveness of

this particular reuse approach. However, the information about the technical limitations of the

Ada language presented here is certain to provide new insights for software engineers new to

reuse. The goal of this paper is to provide such engineers with a useful way to think about the

process of reusing software, and the process of designing reusable components. It is also the goal

of this paper to provide software engineers with a description of some of the problems they may

encounter when designing components in the Ada language, with the hope that this will allow

them to construct software that is more reusable.

Upon the foundation of the 3C model, this paper develops a set of guidelines for

representing reusable components in Ada. These guidelines are designed to provoke component
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designers into thinking about design decisions they might other make without taking reusability

into consideration.

In addition to the central theme of the 3C model, Section 2 states that reduced mainte-
nance cost is the true goal of software reuse. While many past researchers have concentrated on
the savings reuse can offer for development, that benefit is far outweighed by the potential mainte-

nance savings.

This paper also differs from many previous writings about software reuse in Ada. It

focuses on the limitations of Ada that inhibit or reduce reusability, since Ada's benefits have been
effectively discussed elsewhere. This is a direct result of the goal to provide software engineers
with practical information about constructing reusable software in Ada.

Both Ada's limitations and the structure of the 3C model point out a significant problem
that has not yet been solved in any language. Termed the "parameterization management" prob-

lem, it may limit the size or the flexibility of large reusable components. This problem is intro-

duced in Section 2.6 and expanded on in Section 5.3.

In addition to focusing on Ada's limitations, this paper also discusses several areas where

unwary component designers are likely to make mistakes. Often, the reuse implications of certain

decisions made during design are not immediately apparent. With the goal of forewarning

designers, Section 6 summarizes the most common areas where choices might be implicitly made

that limit component reusability.

TECHNICAL CONTRIBUTIONS

There are five main technical contributions in this paper. First, the description of the 3C

model presented in Section 2 is a significant step in the maturation of this model. Although the
validity of the model is still open to debate, this presentation of the model is a step towards solidi-

fying its concepts.

Second, the technical guidelines on how to represent reusable components in Ada is an

important contribution. These guidelines are founded on the 3C model, and form the heart of the

paper. The guidelines presented in this paper are not designed like a "style guide" for program-

mers, but rather as thought provoking statements about how the interfaces of reusable components

should be designed. The purpose of these guidelines is to spur component designers and writers
to think about the ramifications of decisions they might otherwise make without serious thought.

Third, the discussion on table-driven programming presented in Section 5.2.3 is also not-

able. Although the table-driven approach to programming is certainly not new, documentation on

it is scarce. In addition, Section 5.2.3 shows how table-driven programs can be efficiently imple-

mented in Ada while still maintaining an effective table-driven abstraction.
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Fourth, the discussion of iterators presented in Section 6.3 consolidates some previous
work on the topic. It also offers a somewhat new perspective on the various techniques for defin-
ing iterators, and presents a summary of the advantages and disadvantages of each approach.

Fifth, Appendix A contains a preliminary component labeling strategy. The contents of
Appendix A are derived from Section 6, which is in turn derived from Booch's work [Booch87a].

Although Appendix A is primarily an aggregation of previous work, new information has been
added so that it can be effectively used not only to label new components but also to effectively
determine the "usability" of labeled components in a library.

TECHNICAL SUMMARY

After the background material, the technical body of this paper is divided into five parts.
Section 2 presents the 3C model. Then Section 3 describes the reusable component described as
an example through the paper. Section 4 briefly discusses the features of Ada that enhance reusa-
bility, and presents guidelines for using these features. Section 5 covers the limitations of Ada
that restrict reusability, and Section 6 covers the areas where common mistakes that limit reusabil-

ity are likely.

In Section 5, five main limitations are discussed. First, the restrictions of Ada's encapsu-
lation mechanisms are presented, along with techniques to avoid these restrictions. Second, the
fact that Ada does not support multiple implementations for a single package is discussed, along
with work-arounds. Third, the fact that the Ada language is built around the assumption that the
assignment, or copy, operator is the primary means of moving data around is discussed, including
viable alternatives. Fourth, Ada's lack of support for table-driven programming is presented,
including an alternative. Finally, the parameterization management problem is discussed.

In Section 6, four areas where common mistakes are likely are delineated. These areas
consist of memory management models, concurrency protection models, iterators for abstract data

types, and save and restore operations for abstract data types. The possible approaches in each
area are presented, with the discussion focusing on the choices that restrict the reusability of the

resulting components.
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1. INTRODUCTION

1.1 PURPOSE

Many exciting claims have made by individuals advocating "software reuse": it will
save money, increase productivity, reduce errors, and improve maintenance. But what is "reus-
able software," and how are reusable software components constructed? Different individuals

often have widely disparate ideas of what constitutes such software, or of what the process of
"software reuse" is all about. To evaluate these claims, one must gain a clearer understanding of
the concept of reuse and its implications. This paper is aimed at developing such an understand-
ing.

This paper explores the topic of software reuse at a programming level, focusing on how
reuse can be achieved in the Ada programming language. It is aimed at people working at the
detailed design level, designing units that will be implemented in Ada and that may have reuse
potential. The paper primarily discusses code reuse, but in order to achieve effective code reuse,
reuse must be considered during detailed design. In fact, the earlier software reuse is considered
during the design process, the greater the potential for savings. Thus, the paper presents a detailed
discussion of the tradeoffs a designer must consider early on during the design of a component.
This analysis is centered around a conceptual model of what a reusable component actually is.
This model is a very appropriate way of thinking about reusable components during all stages of
development, whether the goal is designing new components or applying available ones.

Because of the language-specific detail present through much of the paper, the reader

should be very familiar with the Ada language. Although the Sections 1 through 2 can be read by
a wider audience, the remainder of the paper assumes the reader is already familiar with how the
features of Ada are used to create software modules. In particular, the reader should be very fluent
in the use of packages to control visibility, the use of limited private types to model abstract data
types, and the use of generic packages to provide configurable software modules. Readers who
wish to get the most value from Sections 3 through 6, but who do not have this background

knowledge, should consult references such as [Booch87a], [Tracz89a], and [Mendal86a].

m~ n m lmu n lmem f I AlBI nmmi l ial~ im ln



1.2 SCOPE

This paper is intended to highlight the necessary software reuse design decisions that
must be made during the detailed design of component interfaces, and to provide advice on how

to make these decisions. Since reuse of "software artifacts" at a higher level than code (i.e., reuse
of design, specification, etc.) is still relatively immature, this paper avoids detailed discussion of
that. Instead, it focuses on code reuse techniques, though some sections herein may also be appli-
cable to the reuse of other software products (Section 2.5).

The guidelines contained in this paper are general guidelines applicable to any Ada
development effort, and not targeted to any specific real-time or SDI-related efforts. In particular,
this paper raises a collection of tradeoff decisions that must be made and discusses the factors that
are important to them. It does not, however, supply a set of "correct" decisions for real-time or

fault-tolerant systems. Unfortunately, such a set of decisions will only maintain its "correctness"
when considered in the context of an application-specific environment. Instead, guidelines are

provided on how to make the decisions for a more conventional, non-real-time application. Practi-
tioners working in specialized domains may choose to make each design tradeoff differently than
suggested in this paper, but the tradeoff analysis and discussion presented here will still be appli-

cable.
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2. A MODEL OF A REUSABLE SOFTWARE COMPONENT

It is important to begin any discussion of the topic of software reuse with a common
understanding of the subject matter and terminology to prevent miscommunication. To that end,
the following definition advocated by Will Tracz is proposed: "reusable software is software that

was designed to be reused" [Tracz90b] [emphasis addedb. While this definition is somewhat ci-
cular, it does distinguish reusable software from "salvaged" software scavenged from existing
non-reusable code, and from code "carried-over" from previous versions of a product [Tracz90b].

In addition, it highlights the fact that reuse is something that must be considered during design,
not retroactively patched on to existing products as an afterthought.

Given this definition of reusable software, many new questions arise:

a. What does a reusable piece of software "look like"?

b. What are its characteristics?

c. How is it "tailored" for a specific application?

To answer these questions, and also to provide a common foundation for the discussions
in the remainder of this paper, this section introduces a conceptual model of a reusable software
component. A reusable component is more than "a piece of software"-it is an encapsulated
abstraction, and as such it constitutes the basic building block for software reuse.

2.1 THE 3C MODEL

The "3C Model" of reusable software components was developed at the "Reuse in Prac-
tice" workshop, held from July 11-13, 1989 in Pittsburgh, Pennsylvania, by the Implementation
Issues working group chaired by Will Tracz [Tracz90a]. It is based on Goguen's work with
LlL[Goguen84a] and OBJ[Goguen83a], which has a sound mathematical foundation in category
theory and many-sorted algebras. The name of the model comes from the three ideas upon which

it is based:

a. The concept-what abstraction the component embodies.

b. The content-how that abstraction is implemented.

c. The context-the software environment necessary for the component to be meaningful.

3



To begin explaining these terms, consider a very simple and intuitive mapping of these

ideas into Ada: the concept might become a generic package specification, each separate content

might become a different package body for that specification, and the contextual decisions might

be represented as the formal generic parameters of the package specification. Although this map-

ping is overly simplistic and hides many of the subtleties of the 3C model, it provides a more con-

crete image of the 3Cs in this initial discussion.

Figure 1 illustrates of how such a reusable component might be visualized. However, the

three "C" terms are much more sophisticated than this mapping would suggest. Each will be dis-

cussed separately in turn. Note that throughout this paper, these terms will appear in italics to

separate them from conventional usage of the corresponding English words.

Exported
Operations

(/" I (AbstractionS _ Cotx

I (Parameters

provided by
Implementation the Reuser)

of Operations

Content (Implementation):

Figure 1. The 3C View of a Reusable Component

The model begins with the concept that the component embodies. The term concept is

used here to denote an abstract model of what the component does. This is the user's model of

what can be done with the abstraction, rather than the component writer's model of how these

capabilities are implemented.

A formal definition of the concept is very desirable, since it allows for tools that assure

the user of a component that the component is being applied correctly. This definition may

include the functional semantics of the concept, both for greater error checking and for
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verification purposes. An example of a reusable component's concept would be an Ada package

specification augmented with Anna] to define its functional semantics [Tracz90a].

Note that although the concept encompasses the functional semantics of the component,

the representation of the concept in a given language, such as Ada, is still useful even if it does not

formally capture these semantics. The distinction between the concept and its representation in a
programming language is vital-the concept, by definition, includes the component's functional

semantics. A partial representation of the concept that does not formally capture semantics is still

useful, however, because it does specify other aspects of the concept. The implementation of the
component can still be automatically checked against those portions of the concept that are

represented. The lack of functional semantics in such a representation will merely limit the

amount of checking that can be done by machine to ensure that such a component matches the

actual concept.

Next, the content of a component is the actual algorithm, the how which implements the
concept. Of course, more than one algorithm may implement the concept, so more than one

corresponding content is allowed. If the expression of the content allows (i.e., if the implementa-

tion language in which the content is defined allows), the content can be verified against the for-

mal description of the concept to ensure it provides all "exported" capabilities.

An example of a group of implementations for a single concept in Ada is the collection

of 26 stack packages found in Grady Booch's components [Booch87a,Tracz90a]. Such a "fam-

ily" of implementations for a single concept, originally proposed in [Pamas76a], allows the user

to select the implementation most suited to the task at hand.

Last, there is the context in which the concept and content are defined. The term context
refers to those parts of the software environment external to the component that are relevant to the

definition of the concept or content. This definition is a formalization of an intuitive idea of the

"context" or environment in which a piece of code is defined and operates.

To gain a better intuitive understanding of context, consider a component author creating

a new Ada package specification. This author might develop the specification "from first princi-

ples," using only the abstract 1,Aachine provided by the language. No references to types, rou-

tines, or anything else not defined locally within the specification would be included. Such a

package specification has no context-it does not use any external definitions. If, on the other

hand, the author referred to any externally defined types, operations, packages, or objects, those

external entities would be part of the context necessary for the definition of the specification.

Similarly, the external definitions used in defining a component's implementation within an Ada

package body are context. For a reusable component, all of these external definitions form the

1. Anna is an annotation language for Ada that, among other things, allows programmers to specify the semantics of
Ada operations [Luckham85a].
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context of a component, and they encompass exactly what may change each time the component
will be used in another application.

By defining a clear boundary between what is in the concept of a component and what is

in its context, the component writer can isolate change away from the core of the component,
Then a potential reuser can configure the component for a given application simply by providing
new values for the context. For example, in Ada the component writer could represent the context
using generic parameters, while the concept would be represented by the remainder of the package
specification.

The "parameters" that represent the context describe an abstract interface between the
component and its environment. Ada generic parameters, for example, describe an interface to
reuser-supplied types, objects, and operations, rather than an interface to a permanent fixture in the
environment. And Just as a formal description of the functionality exported by a specification aids
in error checking, a formal description of this contextual interface is also beneficial. Formal
descriptions of the parameters to a component can provide a basis for determining if the parameter
values supplied by a reuser match the requirements of the component.

In this paper, the term conceptual context will be used to refer to the context of a particu-
lar component's concept (for example, the formal parameters of an Ada generic package specifica-
tion), while the term implementation context will be used to refer the the context of a particular
implementation of a component's concept (for example, the withed units in an Ada generic pack-
age body). The categories of context can be further divided based on additional criteria, but this
rough categorization is all that is necessary for this paper.

In order to get a more intuitive idea of what context really is, consider the following

scenario. A component writer is constructing a reusable component embodying the abstraction of
a "stack." In order for the concept (which, for example, may be represented as an Ada generic
package specification) to be meaningful, the normal operations of push and pop must be defined
to work on some data type. The definition of this data type is part of the conceptual context. The

component writer may choose to make this data type a parameter of a generic package specifica-
tion, leaving the choice of type up to the potential users. This approach of deferring decisions
about a particular element of the conceptual context is shown in Figure 2.

Alternatively, the component writer may decide to hard-wire in a specific data type in his

specification. "Binding" a particular element of the conceptual context when the component is
written is illustrated in Figure 3.

Superficially, there is a similarity between context and parameterization. However, the
discussion of Figures 2 and 3 indicates that some contextual decisions are made by the implemen-
tor, and are thus "fixed" choices from the point of view of a potential reuser. Other decisions are

6



-- to define this unit completely.
package stackof-T is

type stack is limited private;

procedure push(the-item In T;
on-thestack In out stack);

procedure pop(the_stack in out stack;
the_top-item out T),

(remainder of stack operations omitted here]

end stack_ofT;

Figure 2. Simple "Stack" Concept

with ElementTypes; -- This is still "context" because it is external
information which is necessary to define this unit

.- completely. In this case, however, the component
author has "hard-wired" the value of the context.

package hardcodedstack is

subtype T is ElementTypes.userdefinedtype_l;

type stack Is limited private;

procedure push(the-item In T;
on-the-stack In out stack);

procedure pop(thestack in out stack;
the_top-item out T);

. (remainder of stack operations omitted here]

end hard codedstack;

Figure 3. Concept with Hard-Wired Context

left "unbound" so the user may make them. This is in contrast with the traditional idea of

parameters," which are only "bound" by the end user.

Continuing the example scenario of creating a stack concept, as shown in Figure 4, ima-

gine the component writer is now constructing an implementation for it. Note that the context of

the implementation (environment of the package body) includes both the concept (the package

specification) and the conceptual context (the generic formal parameters in the specification).

Now suppose the component writer chooses to implement the stack abstraction using a

linked list for this particular content. The writer may employ yet another concept, embodying the

abstraction of a linked list. The link list concept would tht-n be part of the implementation con-

text for this implementation of the stack concept, a part which would be "fixed" from the point of
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Stack Concept
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Figure 4. A System or Concepts and Implementations

view of potential users. Suppose further that the linked list concept also has many possible imple-

mentations, varying in the way they manage dynamically allocated memory. The implementor
may not want to restrict which implementation of the linked list concept is actually employed to

represent stacks and may leave this decision, which is part of the implementation context, up to

the user who would know more about what memory behavior is required.

Figure 5 shows skeleton Ada code for such a stack package and how this code maps into

the structure pictured in Figure 4.

This example briefly illustrates the basic steps in creating a reusable software component.

When creating such a component, it is important to first identify the abstraction which the com-

ponent is to embody. This abstraction is formalized and becomes the concept. The algorithmic

differences between particular implementations of this abstraction become separate implementa-

tions of content. The other differences (what type of data the abstraction deals with, numeric

ranges, etc.) become context, which may either be bound by the implementor or deferred to the

end user. In an Ada oriented environment, the concept might become a generic specification.

Each separate content that the component writer chooses to implement might then become a dif-

ferent body for that specification. The contextual decisions deferred to the user might then become

the formal generic parameters in the specification.

, i a a i " I | i8



. generic
type T is private;

package Stack Concept is

Stack Concept type Stack is limited private;

us T
procedure push(... );

procedure pop(...

Unbounded Stack -
Impleme~ialtion , -. end Stack Concept;

with List Concept;
package body Stack Concept is

-- The "Unbounded_Stack" implementation

package stack listpkg is newList Concept(...

procedure push(.. .)is

", end push;

end Stack Concept;

Figure 5. Mapping the 3 "C"s Into Ada

Defining reusable components in a programming language can thus be viewed as the task

of separating context from concept, concept from content, and content from context. While this

does not answer the question of how to design reusable components in general, it does provide a
new perspective on the question of how to represent such components. Designing the component
involves forming an abstraction and identifying the concept and the context, then separating them

to achieve the best change control and reusability. Once this is done, one can concretely represent

this abstraction in a given programming language.
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2.2 THE PROCESS OF SOFTWARE REUSE AND ITS BENEFITS

With the model of reusable software components presented in Section 2.1 in mind, the
question of where reuse provides savings can be considered. Intuitively, software reuse saves
both money and time because it is presumably faster to "look up" a component in a library than

to write it over from scratch. Charles Krueger, in describing how ineffective component retrieval
systems can limit reuse, states this common thought as a simple requirement:

To reuse a software artifact effectively, you have to be able to "find it" faster
than you can "build it." [Krueger89a]

However, savings in the time to develop software is only a small part of the benefit which

reuse can provide. It is well known that maintenance cost is the dominant term in the software life
cycle equation [Parikh87a] [NBS84a] [Noel86a). This fact implies that the cost associated with

creating new code during development is much more than merely the time required to write it.
New code also incurs maintenance costs. Further, the greatest potential for reuse benefits is in

reducing maintenance costs.

To see how this potential may be realized, consider a well-established reusable com-
ponent that has previously been used in many different applications. If this component is chosen

for inclusion in a new system, it is likely to cost much less to test and debug because of its stabil-
ity. In some sense, previous users of the component have contributed to the maintenance effort of

the new system by debugging one of the components. Because this component is used in several
delivered systems over time, it is possible for the total maintenance cost for that component to be

amortized over all of the systems, including past, present, and future systems, that also employ

this same component2.

To illustrate how this cost sharing might happen, consider the best case scenario. In this

scenario, all the systems using this reusable component obtain it from the same source. All of the
maintenance teams in turn report all discovered defects in this component back to the source. In

turn, the source upiates the component (and also test cases, documentation, etc.), and notifies all

of the registered users of the change. These users can incorporate the newer version of the com-
ponent into their systems to eradicate the discovered defect.

Although this ideal scenario is far removed from current practice, examination of each

step in the ideal scenario will show how maximal reuse leverage is achieved. Also, it must be
pointed out that in current practice, this library would probably exist within the confines of a sin-

gle project within a single company. Only one system would be involved, and the source of com-
ponents would be a local module library. The component maintainers, component writers, and

2. The legal difficulties that may exist for cost amortization are beyond the scope of this paper.
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component reusers would also be approximately the same group of programmers. The scenario
presented here is phrased in slightly more grandiose terms to show how the central concept can be

scaled to much larger reuse settings, but it is equally applicable to more common reuse experi-
ences.

First, all of the systems in question must have the same component, and the easiest (but
not only) way to achieve this is for the component to be supplied by a common source. The key is
that all the systems must be using "the same component" in order for them to "share" the
maintenance cost.

Note that when these costs are shared between systems, the sharing may not be equal. In
particular, the first system to use a given reusable component may pay a much higher maintenance
cost than a system reusing the same component after it had already been applied in many other
software projects. These effects will depend on whether reusable components are certified or
qualified some how before they are entered into a library. Additional techniques can also be used

to try to equalize this burden if desired.

Second, the maintainers must report newly discovered defects back to the source.
Without this feedback, defects are only removed from one system's local version of the com-
ponent, and subsequent projects which obtain the component directly from the source will be
maintaining code known to have defects. This will effectively prevent any significant mainte-
nance leverage for software reuse.

The benefit of this centralized component source, or library, is clear-all future systems
will have fewer defects to find. In addition, it is also possible for current reusers to benefit from

fewer defects, if additional actions are taken. The "common source" can "feed forward" each
new version of a component to the current reusers3 of the previous version as defects are removed.
This step is needed if current systems are to share maintenance costs with each other, although it
is not necessary for realizing the primary benefit offered to future systems.

All of these steps in the ideal scenario also rely upon a strong version control system in

the reuse library. It is vital that errors reported "from the field" be traced to the correct version of
the component. Further, all future library clients should be given the latest, most error-free ver-
sion of the component, even though older versions may still be maintained in the library because

previous clients are still using them. It is also vital that each client of the reuse library use a
strong configuration management system so that the added oenefits of the "feed forward"
approach can be obtained.

3. In this paper, the term reuser or the term client wili be used to refer to a person who uses a software component,
while the term component writer or component author will be used L denote a person who is constructing a
software component for others to use.
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In this scenario, only the defect correction role in maintenance has been discussed. Other

maintenance tasks, such as fixing errors in the specification of the system, adding new functional-

ity, or adapting the software to a different environment are also important. The modularity sug-
gested by the 3C model addresses these maintenance tasks.

The 3C component model's emphasis on strict component boundaries and separation of

concerns is aimed at promoting highly modularized components. A component's concept not
only protects the reuser from implementation detail, it also protects the component developer
from a reuser's expectations by completely defining the interface contract. This protection can be

further increased by the automatic checking that can be done on concepts that contain semantic

specifications.

This increased modularization helns to protect other components in a system from the

local changes to a specific reusable componm.nt that result from other forms of maintenance. If a
maintainer wants, this new version of the component can be submitted back to the original com-

ponent's source as an "enhanced" version. The revised component may include additional func-

tionality, an altered or improved specification, or the result of any other maintenance task. It can

then be made available to other maintenance teams working on other systems using the original

component in order to amortize the cost of other forms of maintenance, and also to the developers

of new systems.

Thus, reuse of software components not only has the minor benefit of increasing produc-

tivity during development, but also has the major benefit of reducing maintenance. In addition,

software reuse also leads to higher software quality; when some of a system's components have

already been through the full life cycle on other projects, these components already have a long

history of testing and usage that implies a much lower defect rate than that for new code. The bot-

tom line is that the strongest reuse leverage comes from amortizing the maintenance costs for

reusable units over all its "reusers," past, present, and future.

2.3 HOW COMPONENT TAILORING AFFECTS THE BENEFITS OF REUSE

With this leverage point in mind, it is important to examine how reusable components are

constructed and tailored. Separation between conccp: and content follows the traditional lines of

separating specification from implementation, which already exist in software engineering prac-

tices. This separation can often be achieved using the underlying separation mechanisms within

the implementation language-for example, using Ada package specifications and bodies.

Separating out context, however, may not be directly supported by all implementation

languages. When separating the context from either the concept or the content, it is important to

know who will "bind," or provide values for, that context: the reuser or the component

developer. Once the context has been identified, that portion of the context that will be provided
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by the reuser must be expressed in such a way that the reuser can actually control it.

When the reuser provides values for this context he is "tailoring" the component. There

are a wide variety of mechanisms by which the user may tailor a component, each with its own

associated method of describing the context that may be changed. A list of some of the n. )st com-

monly used mechanisms would contain:

a. Source code modification

b. Simple text substitution

c. Simple preprocessing

d. Generic parameterization

e. Inheritance

(1) Structural Inheritance-inheriting the structure of the component's concept
(the interface)

(2) Code Inheritance-inheriting the implementation within the component's
content (the implementation code)

f. Application generators

This list of mechanisms, arranged roughly in order of increasing "automated" support, shows the

extreme variability in possible approaches to tailoring a component. Although in principle any of

these mechanisms can be used with any programming language, practical limitations may prevent
this. Those mechanisms that provide the most automated support for tailoring are often costly to

add to a language that does not already support them, and this cost must be traded off with the

benefits of those tailoring mechanisms, which are already supported by the language.

Examining the costs and benefits of the available tailoring mechanisms can be very

revealing. Tailoring affects both the component developer and the component reuser. For the
developer, the costs of a mechanism are measured in terms of:

a. The difficulty of developing a tailorable component using that tailoring mechanism-

how difficult is it to create a "template" that the reuser can configure?

b. The safety of the development process-how many "template" errors are automati-

cally detected when the template is written?

For te reuser, costs are measured in terms of:
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a. The difficulty of tailoring-how hard is it to provide the missing context, i.e., fill in the

template?

b. The safety of the tailoring process--how many inconsistencies or errors are detected
when the reuser performs the tailoring?

c. The difficulty of using the component once it has been tailored--does the structure of

the template make it hard to use once it has been filled in?

The benefits of a mechanism are measured in terms of the generality that a developer can give to a

component. It should be readily apparent that both these costs and benefits are highly dependent

on how a given mechanism is supported by a given programming language.

When the maintenance leverage of reuse is considered, these costs and benefits can be

seen in a new light. The benefits of a particular tailoring mechanism are not measured just in gen-
erality, but also in terms of how much it reduces the amount of required maintenance for a tailored

component.

For example, source code modification might be considered a wonderful tailoring
mechanism because using it will allow the ultimate in generality-all the reuser has to do is tailor
a component "enough" and it will do anything. However, tailoring mechanisms that affect the

maintenance requirements of the "tailored" component have drastically reduced benefits in terms
of maintenance costs. The reuser may introduce quite a few errors into the component just by
tailoring it. The maintenance team will then spend lots of time finding defects in the way the

reuser tailored the component (rather than errors in the component itself). Notice that the cost for
this maintenance cannot be amortized because the defects are specific to this particular tailoring.

In addition, tailoring approaches like source code modification incur further costs in terms of the

safety of component development and the difficulty of tailoring.

In fact, these observations lead to two interesting conclusions. First, if you cannot
separate the defects in the tailoring, which result from errors in the context provided by the reuser,
from the defects in the component, which result from errors by the component developer, you can-

not amortize maintenance cost for reusable components. In addition, the key to increasing qual-
ity through reuse is to prevent tailoring from introducing additional errors as much as is feasible.

Both of these conclusions imply that automated tailoring mechanisms with stringent error check-
ing, both for the developer and for the reuser, are very important.

In addition to these conclusions, considering the maintenance leverage of software reuse

reveals another important point introduced earlier. Both the costs and benefits of any specific
tailoring mechanism are highly language dependent. The degree of automated support provided

by the language can greatly affect these costs, in turn affecting the maintenance costs of tailored
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components.

2.4 POSSIBLE MISCONCEPTIONS ABOUT THE 3C MODEL

Although this introduction to the 3C model of reusable software is detailed enough for

the technical discussions in this paper, in the interests of space and simplicity it does not cover the

full depth of the model. As a result, it is possible that the reader may end up with some mistaken

ideas about some facets of the model. While Ada examples are certainly appropriate for this

paper's audience, seeing the model only through an Ada-oriented "mapping" may lead to

misconceptions.

In order to preempt these misconceptions, this section lays out the most common

misunderstandings that occur in learning the 3C model from an Ada perspective. Unfortunately,

adequately explaining many of these misconceptions would require a full dissertation on the

model. Instead, this section provides a brief explanation to forewarn the reader.

The first misconception is that a concept corresponds to an Ada generic package specifi-

-* cation, and its content is expressed in the corresponding Ada package body. This mapping is sim-

ple and intuitive, but restricting. The concept is really an abstract model of what a component

does, while an Ada package specification is only a description of the syntax used to invoke the

services of a component.

Second, this simple Ada mapping often causes programmers to overlook the possibility

of multiple implementations. A concept may have several implementations, all of which are

selectable alternatives of the same component. Ada does not adequately support this idea, and the

component writer must work around Ada's restrictions in order to supply multiple implementa-

tions. When these implementations are supplied as separate Ada packages, it is easy to consider

*them as separate components, as opposed to alternative implementations of the same component.

Third, using Ada might lead one to underestimate the necessity of the tailorable context

for an implementation. Each implementation of a concept may need its own user-controlled

parameters, which are independent of the context of its concept.

In the 3C model, the kinds of parameters used for a concept are the ones that are neces-

sary to define the abstract functional model of the component. For a stack, for example, the data

type that the stack holds is a necessary element of the conceptual context. For a given implemen-

tation of this stack concept, such as a dynamically sized array implementation, there may also be

*implementation context that is relevant only to this content. For example, if an array representing

a stack grew and shrank by increment elements at a time, the size of the increment might be deter-

mined by the reuser when he tailors this component for his application. But this parameter is not

part of the abstract functional model. Because Ada does not allow a package body to have its own

set of generic parameters in addition to the parameters in the corresponding specification,
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programmers often ignore this aspect of the 3C model.

Fourth, it is very easy from the presentation in this paper to think of context primarily in
terms of generic parameters, and as provided by the reuser. It is presented in those terms for sim-
plicity, and because that is the best available mechanism for providing tailorable context in Ada.
The idea of context is much broader, however.

In a more ideal language, a component writer may want to define one concept--one

abstract model-in terms of another abstract model by difference. In that case, the other inherited

abstract model would be part of the context for the new concept being constructed. In fact, it
would be a part of the conceptual context that was bound by the component author, not tailored by
the reuser. The term "inherited" is used here because inheritance is an ideal mechanism for
defining by difference. This brief example shows that context is not only used by the reuser for
tailoring, and that there are mechanisms other than generics that can be used to define the context

and how it is bound.

In relation to the previous misconception, consider how a component writer might use
implementation context to define a component's content by difference. One could use code inher-

itance mechanisms to define the implementation of some operations within that content. In fact,

the implementation of these operations might be inherited from a completely different component

than the one used in defining the concept. Inheritance in the conceptual context is used for defin-
ing the abstract model of what the component does, while a completely different inheritance
hierarchy may be used in the implementation context to define how the abstract model is actually

fulfilled.

This list of misconceptions is by no means exhaustive, but it does indicate the depths of

the 3C model which are not presented here. Hopefully, this will help preempt "simplifying"

misconceptions.

2.5 REUSE OF OTHER SOFTWARE ARTIFACTS

Now that many of the primary issues surrounding reusable code components have been

brought out, the reuse of higher level software products such as designs, specifications, and
requirements, will be briefly discussed. The current popularity of software reuse as a topic has led

to several claims, some quite dramatic. One of the most seductive claims is that the "really big
reuse payoffs" lie in reusing designs, or even higher level software abstractions, which are rein-
terpretable in different environments or applications:

Design reuse is the only way we can come even close to an order of magnitude
increase in productivity or quality. [Biggerstaff87a]
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Such representations are inherently more general than code because they have less

detail-fewer engineering decisions about them have been made that might rule out possible

applications. Although this generality is obviously desirable, taking advantage of it can be tricky.

Consider reusing a design in a different environment, for example reusing the design of a subsys-

tem that was actually implemented in C under the Unix operating system and giving it an Ada
implementation targeted for VMS.

In this case, the "really big payoff" is in terms of time to create the design, and there is

very little payoff in terms of reduced maintenance cost. In fact, the only maintenance payoff will

come from maintaining software developed from a "well tested" design, a benefit that is likely to
be very small compared to the cost of maintaining all of the new code that will be written.

If, however, all of the software levels below the design were reused with the design (not

possible in this example) maintenance payoffs could still be achieved. This would be analogous

to reusing a software component that consisted of a very large subsystem. This might also be

realized by embodying the design in an application generator, which would then generate source

code corresponding to the subsystem. But these approaches may not be possible in all cases, and

reuse at the design level alone certainly does give a payoff in terms of development time.

This does indicate, however, that reuse of higher level software representations is not the

answer to all reuse problems, nor should code reuse be abandoned in favor of design reuse since it

is the key to large payoffs during the maintenance phase of the life cycle. On the other hand, this

discussion also indicates that reuse should be considered at design time, where opportunities for

reusing the largest components are higher. If such large components can be reused as complete

subsystems, there can be a very high payoff in both design and maintenance costs. This discus-

sion is equally applicable to reuse of even higher representations, such as reapplying portions of

specifications, and requirements.

2.6 REUSE OF MORE COMPLEX SUBSYSTEMS

In addition to the reuse of higher levels of software representation, the reuse of more

complex software components, such as subsystems or systems, also raises issues. The most
important issue is one raised during the Common Ada Missile Packages (CAMP) project [McNi-

choll86a], dealing with "coupling and cohesion."

One claim of structured software design that has an effect on reusable software is that

modules or components should be loosely coupled and highly cohesive [Stevens79a]. While

component designers may opt for newer alternatives to structured design, the interpretation of this

claim within a framework of reusable software has clear benefits. Components are more reusable
if they are independent of other components, and they are easier to reuse if they only encapsulate a

single abstraction [Booch87a].
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CAMP, one of the first industrial-strength projects faced with the problem of constructing

reusable components, included the development of "intermediate" [Levy87a] components at the

subsystem level, which were much more complex and domain-specific than the low level data

abstractions found in typical component libraries. As a result of this effort, Sholom Cohen

observed a curious characteristic of the CAMP intermediate components-they tended to be highly

coupled and loosely cohesive [Cohen9Oa]. This observation opposes the intuitive idea that reus-

able components should be as independent as possible.

There are three potential causes for this problem, which the author has termed "coupling

inversion." First, the CAMP components were written for a real-time, embedded computer

environment. The efficiency concerns present in such an environment may make certain tradeoffs

between reusability and performance necessary.

Second, * is possible for a reusable subsystem-level component to be composed of

tightly interdependent pieces. While these pieces may not be very reusable when considered

separately, the subsystem they form may still be reusable. In other words, it is possible for a reus-

able "whole" to be composed of parts that are not reusable. Components of this nature, which
may arise more often in the real-time arena, are discussed in Section 4.1.

Third, the CAMP program may have encountered the effects of the "parameterization

management" problem. The CAMP components were written in Ada, using Ada's generic

mechanism for tailoring. Naturally, as components grow to the subsystem level of complexity,

there are more and more contextual decisions that the reuser can make. As the number of tailor-

able attributes grows, the costs associated with a particular tailoring mechanism, both in terms of
how difficult it is for the author to set up the component and how difficult it is for the reuser to

tailor it, becomes much more of a burden. At some point, it is possible that this cost may even

outweigh (or be perceived to outweigh) the benefits of reusing the component. Specifically, it is
possible that in the CAMP case, this point was reached in some subsystem-level components, and

this contributed to the coupling inversion.

The parameterization management problem is an important concern. There is currently

no model of the process for tailoring (or parameterizing), its purpose, what the available mechan-

isms are, or how the mechanisms are used. Instead, there is only a selection of mechanisms to

use, without any real understanding of whether these mechanisms fill all the needs, or which ones

are appropriate for what forms of parameterization. Section 5.3 will discuss this problem and

current solutions more completely.
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3. AN EXAMPLE OF A REUSABLE COMPONENT

In order to provide a common reusable component for discussion in the subsequent sec-
tions of this paper, this section will introduce an example written in Ada. Sections 5 and 6 will
discuss different aspects of this component, adding additional detail to it as necessary. Thus, this

section provides a high level overview of the chosen component rather than a complete discussion

of all its characteristics.

Although the preceding sections do not require an in-depth Ada background, the

remainder of the paper assumes the reader is already familiar with how the features of Ada are

used to create software modules. In particular, the reader should be fluent in the use of all of the

features discussed in Section 1, particularly Ada generics. This example does not show the ele-
mentary techniques of how one can "generalize" an application-specific code module or routine.

Instead, it picks up where such elementary discussions leave off. The example is presented as a

model of how such "generalized" components are written today so that the more advanced, Ada-

specific issues which affect the component's reusability can be discussed. For the reader
interested in the basics of using Ada's generic features to generalize software modules,

[Tracz89a], [Mendal86a], and [Booch87a] offer excellent coverage.

The concept chosen to serve as an example is based on a "general purpose" data struc-
ture (GPD) developed for use at Ohio State University by the Reusable Software Research Group.

This abstraction is a generalization of the idea of a "linked element" that can be used to create a
wide variety of linked structures.

This abstraction was chosen as the paper's central example for several reasons. First, it is
more sophisticated than the basic data structures most often chosen as exemplary reusable com-

ponents. This is because approaches that appear to work for simple data structures often do not

scale effectively to the more complex structures used in larger software systems. Second, the

freshness of the example will hopefully make it more interesting for experienced readers. Third,

the example is complex enough so that it can be used to discuss all of the points raised in this

paper. On the other hand, it is still a single abstraction based on a data structure so that it can be

presented and understood with minimal reference to other software modules. With these thoughts

in mind, the remainder of this section presents an overview of the GPD concept.

An enhanced version of the GPD concept discussed in this section, supporting additional

node categories and more complex functionality, is actually in use at the Institute for Defense
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Analyses (IDA). While the component is a low level data abstraction, it is sophisticated enough to

highlight many of the tradeoffs that must be made when designing reusable components. Sections

5 and 6 will discuss each reuse decision in detail, suggesting ways the specification presented in
Figure 1 could be improved. Finally, Appendix C provides complete source code listings for the

Ada package specifications of the GPD component, beginning with the "naive" version in Figure

I followed by the progressively generalized versions which include the changes discussed in Sec-

tions 5 and 6.

3.1 DESCRIPTION OF THE GPD ABSTRACTION

Each element, or node, in a GPD structure has a "slot" that holds data of some user-

defined type. In addition, GPD nodes can be classified by the way their outgoing links are struc-

tured.

Nodes that do not have any outgoing links are considered "leaf" nodes, while nodes

which do have outgoing links are "non-leaves." Leaf nodes may contain an additional data slot

in lieu of outgoing links, and are categorized based on this additional slot: gpdinteger nodes can
hold an integer value in this slot, gpdboolean nodes can hold a boolean value, and gpd empty

nodes do not have an additional slot.

Non-leaf nodes with outgoing links ccnceptually organized as an array are categorized as

gpd_parent, and non-leaf nodes with outgoing links conceptually organized as a list are categor-

ized as gpd sequence. Notice that this is the conceptual model presented to the clients of the
GPD component. The content, on the other hand, may use any appropriate method to implement

this abstraction.

Some operations on GPD nodes are shared by all node categories, such as operations for
accessing a node's commonly typed slot, or the deallocation operation. Each category also has a

category-specific set of operations tailored toward manipulating its outgoing links.

Figure 6 provides an illustration of a very simple GPD structure. In it, Node I represents
a gpdparent node with an array of four outgoing links to Nodes 3, 4, 5, and 2, respectively.

Similarly, Node 2 is a gpd sequence node with a list of outgoing links to Nodes 3, 4, 5, and 1,

respectively. Node 3 represents a gpd.integer node, Node 4 a gpd boolean node, and Node 5 a

gpd empty node. This picture provides a more intuitive understanding of how the structures

declared in an Ada package for this concept can be utilized.
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Figure 6. Graphical Depiction of a GPD Structure

3.2 THE ADA SPECIFICATION FOR THE GPD PACKAGE

This section discusses each piece of the Ada specification representing the concept of the
GPD component. The full specification is provided in Appendix C for reference. This "naive"
specification will serve as a starting point for the tradeoff analysis presented in Sections 5 and 6.

Throughout this paper, a consistent notation will be used when referring to the features of
specific Ada code examples, or to specific Ada features. All Ada keywords will appear in bold
face type. Similarly, all identifiers that appear in example code will appear in italics when they are
discussed in the body of the paper. This will easily distinguish references to specific terms from
the regular usage of English words that the terms may be named after. Note that in the comments
within example code (which appear in italics), references to identifiers declared within the code
will appear in all capitals. In addition, all Ada code that appears in this paper has been compiled
and tested using a validated Ada compiler.

3.2.1 THE GENERIC PARAMETERS AND TYPE DEFINITION IN THE GPD
CONCEPT

Figure 7 shows both the generic formal parameters of the GPD abstraction and the Ada
type definition for gpdtype. The type CommonNodeContents represents the type of informa-
tion that is held in the primary data slot of every GPD node. As mentioned in Section 3.1, each
gpdtype node also holds secondary information. The enumeration node class defines the various
flavors of GPD nodes, which differ according to the kind of information stored in this secondary
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with textio;
generic

type CommonNodeContents is private;
package GPDpkg is

type node-class is (gpd-empty,
gpdinteger,
gpd-boolean,
gpd-.parent,
gpd-sequence);

type gpd..type is private;
nullgpd node : constant gpd-type;

Figure 7. The Generic Parameters and Type Definition Used In the Specification for GPD Concepi

location.

3.2.2 THE COMMON OPERATIONS SUPPORTED FOR ALL GPD NODES

Figure 8 shows the operations that the GPD concept provides for all GPD nodes, regard-
less of their nodeclass. These operations include those necessary to deallocate GPD nodes and

reclaim the resources they are using, as well as routines to read and write the Com-
monNodeContents slot of a given node.

3.2.3 AN EXAMPLE OF THE OPERATIONS DEFINED FOR LEAF NODES

Figure 9 shows the operations that are exported for a specific node class-gpdinteger.
Notice that the category-specific operations for this node type are bundled into a subpackage
within the main GPD_pkg specification. The operations for all other node classes are treated simi-
larly. This divides the specification up into more manageable pieces to ease understanding. It
also makes it possible for reusers to use the subpackage for the node classes they are concerned
with, without extensively cluttering the name space within that Ada scope. Further, it allows users
to use dotted notation to explicitly specify which versions of some overloaded functions are being
used if they desire to increase readability.

All of the subpackages are similar in structure to the one pictured in Figure 9. The
operations newnode, getdata, and put-data are all overloaded to increase usability of the pack-
age. Only one set of operations need be remembered in order to use any of the leaf nodes. The
exceptions to this overloading approach are the newnode functions of the classes gpd_empty,
gpdparent, and gpd sequence. Because the newnode functions of these three node classes are
(or can be) called with no arguments, they are given distinct names so that there are not name col-
lisions.
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.- The following 5 routines are common to all node classes.
-. They include functions to determine the class of a node,

deallocate a single node or a whole gpd structure, and
-- read or write the COMMON NODE-CONTENTS slot of any node.
-- These 5 routines are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions for a give node-class. Note that some functions
-- are overloaded (like NEW NC .)E, etc.) if the desired node-class
-- can be determined from the ar, , rment profile, but ambiguous cases
-- (like NEW NODEfor generating a gpd sequence vs. a gpdempty)
-- are given distinct names so they do not have to be qualified
-- with subpackage names.

function nodeclass of(node : In gpd-type) return node_class;
procedure free(node: in out gpdype);

-- FREE is equivalent to recursively FREEing each child of
-- a parent/sequence, then using FREESINGLENODE. Nodes are

marked so that cycles in the GPD are handled correctly.
procedure free-single node(node : n out gpdjtype);

-- This routine frees the space occupied by a single node.
...................................................................

--All gpd nodes contain an element of type COMMONNODE-CONTENTS.
-- These functions allow access to this component of every node:

function get_data(node : In gpdtype) return commonnode-contents;
procedure putdata(node in out gpd type;

data n common_nodecontents);

Figure 8. The Common Operations Exported for GPD Nodes

...................................................................

-- This subpackage defines the functions available for GPD nodes
-- of class GPDINTEGER. Each operation will ensure that its arg
-. is of class GPD.INTEGER, raising GPDERROR if otherwise.

package integer-node-pkg Is
function newnode(data : in integer) return gpd-type;
function getdata(node : In gpdjtype) return integer;
procedure put-data(node in out gpd-type;

data n integer);
end integer nodepkg;

Figure 9. The Subpackage Defining the Operations for GPDInteger Nodes

The subpackages for gpdempry and gpdboolean are not shown here because of their

similarity to Figure 9. They are provided in Appendix C, however.
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3.2.4 THE OPERATIONS SUPPORTED FOR GPDPARENT NODES

...................................................................

-- This subpackage defines the functions available for GPD nodes
-- of class GPDPARENT. Each operation will ensure that its arg

-i as of class GPDPARENT, raising GPDERROR if otherwise.

-- A node of class GPD PARENT has an ordered list of children.

-- From the user's point of view, this list is organized as an array. The
-- length of this list is determined by the parameter to

MAKE EMPTYPARENT_NODE when the node was first created, and

-- this size cannot be changed for that parent node. The
children (some of which may be NULL GPDNODEs, the constant

-- defined earlier in the package for use as a null value) may be accessed
-. in any order using their positions relative to the beginning of
-- the list (i.e., their array index). Indices run from I to

-- MAXCHILDREN.

package parent nodejpkg Is
function make.empty._parenLnode(

maxchildren : In positive:= 2) return gpd_type;
function maxchildren(node : In gpdttype) return natural;

procedure put.child(childnode : n gpd type;
parennode in out gpdype;

position in positive);
-- This routine assigns the specified CHILD-NODE into
-- the specified position of the PARENT NODE's conceptual

-- array of outgoing links. This overwrites any previous value
-- there. Since objects of GPD_TYPE are represented as pointer
-- values, this introduces structural sharing.

function get.child(parent.node in gpxitype;
position In positive) return gpd-type;

end parent-node_.pkg;

Figure 10. The Subpackage Defining the Operations for GPDParent Nodes

Figure 10 shows the subpackage that defines the available operations for gpdparent
nodes. A gpd_parent node is conceptually modeled as a structure that has two subparts: a slot for
holding CommonNodeContents, and a fixed-length array of slots for holding other gpd nodes.
The size of this array is specified when makeemptyparent node is called. New nodes are
created with all entries in this array equal to null.gpdnode.

The function get child can be used to read the value of any entry in this array. The pro-
cedure put child can be used to set the value of any entry in this array. Currently, using the
assignment operator on items of type gpd type produces aliases, so that GPD structures can be
shared between multiple references. This aspect of the package is discussed more thoroughly in

Section 5.2.2. It is mentioned here so that the reader understands that using put-child inserts a
reference to the child node into the parent's conceptual array, potentially introducing sharing
between different GPD structures.
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3.2.5 THE OPERATIONS SUPPORTED FOR GPDSEQUENCE NODES

Figure II shows the subpackage that defines the available operations for gpdsequence

nodes. Conceptually, this node class is very similar to the gpdjparent class, and all of the com-

ments about the behavior of that class in the preceding section also apply here.

The primary difference in the gpd sequence class is that instead of a conceptual, fixed-

length array, this node contains a dynamically variable set of references to other GPD nodes that is

conceptually arranged as a list. Upon creation, new gpd sequence nodes have no entries in their

list of children. New references can be added at either end of this list. Also, any entry in the list

can be accessed by position, just as with the gpd_parentnode.

...................................................................

-- This subpackage defines the functions available for GPD nodes
-- of class GPD SEQUENCE. Each operation will ensure that its arg
-- is of class GPDSEQUENCE, raising GPDERROR if otherwise.

-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by the
-- subroutines in this package.

package sequence node...pkg Is
subtype sequence-type s gpd-type;

-- This subtype is just used for clarity in the
-- declarations below to show where a node of class
-- GPD.SEQUENCE is expected. If a node of a different

class is used where this subtype appears, GPDERROR
-- will be raised.

function male-empty-sequence-node return gpd-type;
-- Return a new GPD_SEQUENCE node with no outgoing links.

procedure append(seq In out sequence_type;
newelement In gpd-type);

procedure remove-head(seq In out squence_type;
head out gpd-type);

procedure prepend(seq In out sequence_type;
newelement in gpd-type);

procedure remove_tail(seq In out sequence_type;
tail out gpd type);

procedure read and consume(seq in out sequence-type;
element out gpd-type;
N n positive:= 1);

-- Removes the Nth element of the list of outgoing links,
--placing its value in ELEMENT.

procedure read nth element(seq in out sequence-type;
element out gpd type;

N In positive:= 1);
--places the value of the Nth element of the list of outgoing
-. links in ELEMENT without altering the list.

procedure consume(seq in out sequencejtype;
N n positive:= 1);

.. Removes the Nth element of the list, without calling
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-. FREE on the contents. The reference stored in that
-- outgoing link is lost.

procedure consume_nelements(seq in out secuence-type;
N in positive);

-- Removes the first N elements of the list, without calling
-- FREE on any of the contents. The references stored in those
-- outgoing links are lost.

function length(seq : in sequence-type) return natural;
-- returns the number of outgoing links

procedure reversesequence(seq : in out sequence_type);

-- reverses the order of the list of outgoing links
function copy(sequence : in sequencetype) return sequence_type;

-- produces a new node of class GPD_SEQUENCE with an
-- identical list of outgoing links

procedure concat(onto, from: in out sequenceype);
-. remove all outgoing links from ONTO, concatenating them
-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function isempty(seq : in sequencejtype) return "oolean;
-- are there any outgoing links from SEQ?

end sequence-node.pkg;

Figure 11. The Subpackage Defining the Operations for GPDSequence Nodes

3.2.6 THE REMAINDER OF THE GPD CONCEPT

-- Errors."
-- This package only defines one exception, GPDERROR. This
-- exception is raised whenever a node-class-specific function
-. or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINTERROR is raised if NULL_GPDNODE
-- is passed into a routine.

gpd_error .- exception;

private
type gpd-block(class nodeclass gpd-empty;

top-size natural 0;
botom-size natural 0);

type gpd-type is access gpd-block:

null.glpnode : constant gpdtype := null;

end GPD.pkg;

Figure 12. The Private Part of the GPD Specification

Figure 12 shows the final portion of the GPD package. The private section provides the

Ada compiler with information about the representation used for the type gpd type for separate

compilation. The GPDpkg specification defines gpd type as an access type to the incompletely
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declared type gpd block. Thus, GPD nodes are physically represented as access variables, but the
definition of the corresponding structure is deferred to the body of GPDpkg.

Figure 12 also shows the single exception defined by the GPD abstraction. This excep-

tion is raised whenever operations that are only appropriate for nodes of a specific node class are

accidentally invoked on a node of a different class. Also, the predefined exception CON-

STRAINTERROR will be raised if any get-data or put-data operations are attempted on a GPD

node that is equal to null-gpd-node.
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4. BENEFITS OF ADA FOR REUSABLE SOFTWARE

The support Ada offers for "good software engineering practices" has already been dis-
cussed at great length in other publications [Watt87a] [Nielsen88a] [Booch86a]. Similar discus-
sions of how Ada supports software reuse also abound [Mendal86a] [Gargaro87a] [Braun85a].
Rather than retread this ground, this paper will concentrate on how well the Ada language sup-
ports the model of reusable software components presented in Section 2. This model is the basis

for discovering both the strengths and weaknesses discussed in this paper. Of course, as has been
mentioned elsewhere, this model is still maturing. Knowledge of the benefits and limitations it

points out will neverless be useful, even under alternative models.

4.1 SUPPORT FOR CONCEPT-PACKAGES AND LIMITED PRIVATE TYPES

The Ada language was engineered with the capabilities of abstraction, encapsulation, and
information hiding in mind. The separation between specification and implementation in a

software module, necessary to support these capabilities, can be enforced through the use of pack-
ages. Likewise, generics are an effective way of representing parameterized units. In fact, a gen-
eric package specification is a natural way to represent the concept of a reusable component in
Ada.

Ada allows the construction of "opaque" type definitions, where the actual physical real-
ization of the type is invisible to its users. Making a type exported by a package private restricts

the operations available to clients of the package, preventing them from depending on a particular

representation for that type. The only operations available to a client for such a private type are
equality comparison, variable assignment, and the operations explicitly defined for that type by

the component author4.

Limited private types can be used to constrain "opaque" types even more. Exported

limited private types do not even have comparison or assignment operators available--only the

operations provided by the component author can be used on variables of this type5 .

Thus, Ada's primary means of creating abstract data types is through the declaration of
programmer-defined data types, particularly private or limited private types. Each such abstrac-
tion may be encapsulated within a package, and this encapsulation is even required for private

4. Certain predefined attributes are also available for private types, as described in [DoD83a, Section 7.4.2].
5. Certain predefined attributes are still available for limited private types, as described in [DoD83a, Section 7.4.4].
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and limited private types. The operations exported by this package then define the user's view of

the abstract data type and its behavior, completing the abstraction. The use of limited private
also allows all assumptions about how the abstraction is implemented to be completely contained

within the corresponding package body.

Note that abstract data types defined in this manner can be used to represent either pas-
sive or active objects. Passive objects are like traditional data structures. Active objects, on the
other hand, represent independent agents that execute concurrently and that can initiate actions on
their own. Thus, active objects can be used to encapsulate separate threads of concurrent compu-
tation. Ada's tasking features are often used to represent such objects.

However, note that the implementation of an active object should not be visible through a
component's concept. Whether each separate object of the abstract type is represented by a data

structure, by a single task, by a group of intercommunicating tasks, by a combination of a passive
data structure and a commonly shared server task, or by any other method is a detail best hidden

in the content.

Together, the language facilities described above for creating abstractions form the basis
for supporting the definition of component concepts in Ada.

However, just because the idea of a concept naturally maps into an Ada package specifi-

cation, it is not necessary for every Ada package specification in a system to represent the concept

of some component. This misconception may be suggested by the intuitive mapping between
concepts and packages presented in Section 2.1, but notice that this mapping is the simplest of

many alternatives.

In particular, a single reusable component may be constructed from an entire group of
Ada packages. A single, high-level package can be used to consolidate the interface of this multi-

package component so that the user only has one specification to explicitly deal with. This single
package specification corresponds to the concept of the component, and its multi-package nature

is a detail hidden within the component's implementation, or content.

This is an important distinction, since Ada's packaging features can be effectively used

to address many problems other than simply describing concepts. It is certainly not the position
of this paper that everything written as an Ada package must be a reusable component. In con-
structing real-time systems, for example, it is common for a collection of tightly interdependent
packages or tasks to be constructed to perform some higher-level function. Because of their tight
mutual coupling, it may not make sense to try to reapply these pieces independently of each other

in another effort.

The real reusable component in such a system is the collection of tightly interdependent

parts. If such a collection can easily be given a consolidated interface, it is a prime candidate for a
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reusable concept.

The result of this approach is the following two guidelines:

Guideline 1:

A concept should be represented as a single, generic package specification. All

reusable components should be represented to the user in this way if possible. Even large

subsystems should have a single point of visibility. Use subpackages within the abstrac-

tion to organize sets of related operations, if necessary, but maintain the "single top-level

generic per component" mapping, even for components that are actually implemented
using several packages. The user should be able to easily grasp the purpose/function of

the abstraction, although it may take much more time to understand exactly how to fully

utilize the supplied operations.

Guideline 2:

Each concept should provide one and only one abstraction-i.e., define a single

object type. This will help to increase the understandability of the component, and also

aid in separating pieces that may be independently reusable from one another.

Recall that these guidelines apply to reusable components, not to Ada packages in gen-

eral. Section 5.1 will discuss some of the shortcomings of the language features presented in this

section, and how to best use them for defining reusable components.

4.2 SUPPORT FOR CONTENT-PACKAGE BODIES AND MULTIPLE IMPLE-

MENTATIONS

As mentioned in the previous section, the concept of a component is naturally

represented in Ada by a generic package specification, while the content maps into the

corresponding package body. The separation enforced by Ada between a package specification

and body supports the required separation between a component's abstract model and its realiza-

tion in code.

In addition, by making this separation in Ada, there is a possibility of more than one

"interchangeable" implementation of a given package specification, making a family of imple-

mentations feasible. It is possible for a package to have more than one body, with the programmer

controlling which one is visible to the compiler at any given point6. In this way, the basic idea of

multiple implementations for a single abstraction can be supported. This support has shortcom-

ings, however. Section 5.2.1 will discuss these shortcomings, and how to overcome them when

defining component implementations.
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4.3 SUPPORT FOR CONTEXT-GENERICS AND WITH CLAUSES

Section 4.1 mentioned that Ada's generic features were appropriate for representing
parameterized software modules. In fact, the generic formal parameters of a generic package are
the most obvious choice for representing the conceptual context of a component. These parame-

ters would then represent that portion of the conceptual context that the reuser could change in
order to tailor a particular component to a given application.

In addition, those portions of the context that are bound by the component writer can be
represented in Ada through with clauses. These clauses determine what library units are visible
within a given package specification or body. Using with clauses, the component author can
specify the fixed portions of both conceptual context (what an Ada package specification withs)
and the implementation context (what a package body withs).

Together, these language features allow the component author to separate the context

from both the concept and the content. Further, by choosing which feature is used to provide
what contextual information, one can separate the invariant portions of the context from the por-

tions that are designed to be bound by the reuser.

At this point, a definition of coupling and how it is affected by choices about context is
appropriate. To explain coupling, as the term is used in this paper, consider two Ada packages,
named PkgA and PkgB. Intuitively, one package is coupled to another package if it cannot be
used independently of that package. In Ada, this situation can arise in two ways, as illustrated in

Figures 13 and 14.

First, it is possible for the package specification of PkgA to with PkgB. This may be
termed horizontal coupling, due to the illustration in Figure 13. This form of coupling indicates
that the definition of PkgA's interface requires information about PkgB.

Second, it is possible for the package body of PkgA to with PkgB. This may be

termed vertical coupling. This form of coupling indicates that the implementation of PkgA uses
Pkg_B.

Both forms of coupling have different advantages and disadvantages. Without any hor-

izontal coupling, it would be difficult to define abstractions that had other abstractions as subparts,
such as a stack of lists, for example. In addition, without vertical coupling, it would be impossible
to construct larger packages that were implemented in terms of lower-level packages.

Unfortunately, horizontal coupling that is fixed by the component writer and unalterable

by the reuser limits reuse. Rather than withing other abstractions that will be used in defining a

6. The mechanism that the programmer uses to control visibility of package bodies is not defined in the language,
however. It is dependent on the tools available in the development environment.
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wih Pkg.BA ik i ...
packageackage PkB is

.end PkgA; nPk.B

package body Pkg_.A, is package body Pkg_ is

end PkgA; 'is end PkgB;

Figure 13. Horizontal Coupling

new concept, horizontal coupling should be routed through generic parameters if possible for
greater flexibility. This leads to the following guideline:

Guideline 3:

There should be no fixed, horizontal coupling between a concept and other con-
cepts. In other words, Ada packages that represent reusable component concepts should
not with other packages. Instead, all definitions required to describe the concept should
be passed in through generic parameters.

Note that this guideline only applies to Ada packages that represent reusable concepts,
not to all Ada packages. Inside a component that is implemented as a collection of Ada packages,
those packages will certainly need to with other Ada packages to support the component writer's
need for vertical coupling.

Unfortunately, practical limits may prevent strict adherence to this guideline. In particu-
lar, the efficiency cost associated with using generic parameters may be significant in some appli-
cations. Further, strict adherence to this guideline may lead directly to the parameterization
management problem described in Section 5.3. If observation of this guideline is acceptable,
however, it will lead to more flexible and reusable components.

Sections 5.1, 5.2, and 5.3 will all discuss the shortcomings of using generics to represent
reusable components in this way. In addition, those sections will make recommendations on how
to use the available language features to overcome some of these shortcomings.
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with PkgLB;
package body PkLgA , is

end Pkg A-

package Pkg..B is

Figure 14. Vertical Coupling

34



5. LIMITATIONS OF ADA THAT RESTRICT REUSABILITY

This section describes several areas where the presence or absence of certain features in
Ada impedes reuse. These features are interpreted in terms of the 3C model, and their ramifica-

tions on generality and usability are explored.

5.1 SUPPORT FOR CONCEPT-DATA ABSTRACTION AND ENCAPSULATION

To begin the discussion of abstraction and encapsulation, the following two definitions

are offered:

a. Abstraction is the process of creating a higher level description that contains all the

essential properties of some idea, but also suppresses all nonessential details.

[Shaw81 al

b. Encapsulation is the process of collecting all of the necessary information about an
idea or an abstraction in one location.

Both of these ideas are aimed at managing complexity and isolating change, and their benefits are

widely known. In addition, they are the cornerstones of reusability, and of the 3C model.
Suppressing unnecessary detail and placing it in a single location where it can be controlled is the
key to managing change in a complex system. In this sense, unnecessary detail is not needed by

the user of the abstraction, although it is relevant to the implementor. The goal is to create a sin-
gle point of change for this detail in order to eliminate the "ripple effect" exposed changes can

cause.

Ada supports both abstraction and encapsulation to a great degree, but does not require

the use of either. This allows the component writer to make judgements about how much detail
shows through an abstraction or how much encapsulation is used to localize changes. This sec-
tion discusses the reuse ramifications of these tradeoffs in terms of the example presented in Sec-

tion 3.

Ada's primary means of creating abstract data types is through the declaration of pro-
grammer-defined data types, particularly private or limited private types. Each such abstraction

may be encapsulated within a package, and this encapsulation is even required for private and

limited private types. The operations defined in this package thus define the user's view of the

abstract data type.
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For example, GPDfpkg encapsulates the GPD abstraction within a single package that is
centered around the definition of the private type gpd type and its associated operations. How-
ever, there are many places in GPD.pkg where there is insufficient abstraction (unnecessary detail,
usually in the form of hidden assumptions, is given to the reuser) or insufficient encapsulation (the
assumptions are not localized), which reduce the generality of the unit. Often, these faults are the

result of poor design decisions, hut a few are the result of failings in Ada. Each will be discussed

in turn.

First, consider the conceptual context of the GPD component, which consists of the type

CommonNodeContents. This data type is provided by the reuser when tailoring (instantiating)
the component. Figure 15 repeats the section of GPD.pkg where this generic formal parameter is
declared. This code fragment represents the "interface" between the reusable component and the
user-provided abstraction called CommonNodeContents. While the form of generic parameter
declaration presented in Figure 15 is in common use in the Ada programming community, it fails
to provide a sufficiently abstract or sufficiently encapsulated description of the type Com-

mon NodeContents.

generic
type CommonNodeContents is private;

package GPDTpkg is

Figure 15. Declaration of CommonNode Contents

While the declaration of CommonNodeContents does hide much of the detail associ-

ated with the type, this detail is still a very significant part of the contextual interface. In other
words, the detail is hidden, but not suppressed. The hidden details associated with Com-
monNodeContents in this example include all of the "basic" operations defined for the type.
Basic operations, sometimes referred to as primitive operations, are those operations that are

implicitly defined in the Ada language for a given type. For this declaration of Com-

monNodeContents, the basic operations include: assignment, comparison for equality, and an

assortment of attributes7. In addition, this declaration carries an implicit assumption that the
predefined versions of the basic operations--simple, structural assignment and comparison based
on the physical representation of the type CommonNodeContents-are appropriate for all
instantiations of this component.

From the reuser's point of view, not only are these details hidden from view, they are also

out of reach. There is no way for any of the basic operations on Common NodeContents to be
redefined by the reuser, even if the assumptions implicit in the contextual interface will violate the

7. A complete list of the basic operations for any private type is given in section 7.4.2 of [DoD83a].
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abstraction the reuser is trying to support.

Although one could aro -', that these details are all located in a single place (pictured in

Figure 15), none of the details can be controlled from this location. In other words, this form of

generic parameter declaration is also poorly encapsulated. Consider a component author who

wants to change the interface to remove the assumptions of how the basic operations were imple-
mented, for example. Not only will he have to rewrite Figure 15, the component author will also

have to change the body of GPDpkg so that it no longer depends on the basic operations and
instead uses the new portions of the CommonNodeContents interface.

More experienced Ada programmers will attribute these problems to an error in the

design of the CommonNodeContents of the component-this type should be limited private.
In Ada, limited private types do not even have assignment or comparison implicitly declared as

basic operations8. Thus, if assignment or comparison are needed on such a type, they must be

explicitly declared as additional generic formal parameters that the reuser must supply as part of
the tailoing process. Figure 16 illustrates how the contextual interface of GPDkg should be

changed to convert Common_NodeContents to a limited private type.

generic
type CommonNodeContents is limited private;
with procedure assign(from: In Common_NodeContents;

into : in out Common_NodeContents);
with function "="Oeft, right: in CommonNode_Contents) return boolean is <>;

package GPD__pkg is

Figure 16. Common NodeContents as a Limited Private Type

This alternative does provide a more abstract, encapsulated interface to the generic

parameter CommonNodeContents by explicitly capturing all of its basic operations in a user-

controllable form. The problem is that Figure 16 captures all the basic operations that Ada gives
to the type, not necessarily all of the primitive operations the user needs to support an arbitrary

abstraction. In general, to model variables of an abstract data type, you must be able to create

such variables that start off with valid values, move data into and out of such variables, and finally

destroy the variables when you are done with them so resources can be reclaimed. While Figure

16 explicitly declares a basic operation for data movement (the assign operation), and the Ada

language prevents the component writer from moving data into or out of a variable of type Com-

monNodeContents without using this operation, there are no initialization or finalization opera-

tions defined in the interface. There is no way for the writer of GPD.pkg to ensure that any vari-
ables of type CommonNodeContents are initialized correctly, or that such variables are finalized

8. A complete list of the basic operations provided for limited private types is given in section 7.4.4 of [DoD83a].
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when he is through using them9. Moreover, the Ada language allows him to both create and des-
troy such variables even though these operations are available. The fact that Ada does not con-
sider initialization and finalization to be primitive operations of a type is a failing that reduces its
support for abstraction and encapsulation. Although component writers can define such opera-
tions in their interfaces, as demonstrated in Figure 17, the burden of enforcing their use within the
body of the component is placed on the component writer, with no automatic means of error
detection.

generic
type CommonNode_Contents Is limited private;
with procedure initialize(data: out CommonNodeContents);
with procedure finahze(data : in out CommonNodeContents);
with procedure assign(from : in CommonNodeContents;

into : in out CommonNodeContents):
with function "="(left, right: In CommonNodeContents) return boolean is <>;

package GPD.pkg is

Figure 17. CommonNodeContents with Initialization and Finalization

All of the points that have made about abstraction and encapsulation in the conceptual
context of the GPD component are also applicable to its concept. This component is centered
around the declaration of the abstract data type gpd type, shown in Figure 18. Note that the basic
operations provided for this type are implicit in the type declaration itself.

type gpdtype is private;

Figure 18. Declaration of GPDtype

As with CommonNodeContents, this declaration hides essential detail from view whilc
allowing that detail to affect every client of the GPD abstraction. In particular, Figure 18 impli-
citly states that the simple, structural versions of the assignment and comparison operators are to
be used for variables of type gpd.type. Unfortunately, structural assignment on variables of this
type produces an alias pointing to the original GPD structure rather than separate, independent
copy of the GPD structure. Although the component author could provide his own semantically

correct versions of these basic operations, he could not force the reuser to use them instead of the
predefined versions if the type declaration stands as is. Once again, this leads to the use of a lim-
ited private type declaration so that the writer can enforce usage of the semantically correct

operations.

9. Some concepts can be implemented safely without initialization or without finalization for some contextual
parameter types. Such concepts either do not include the creation or do not include the destruction of values of
such parameter types within their semantics. Thus, such concepts'tend to export very simple functionality.
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type gpdjtype is limited private;
procedure assign(from: in gpdtype;

into : in out gpdjtype);
function "="(left. right: In gpd type) return boolean;

Figure 19. Limited Private Declaration of GPDtype

This modification leads to Figure 19. However, the type gpd type still lacks basic opera-

tions for initialization and finalization. In other words, the component author has not provided a
way for the reuser to create variables of the type gpd type that start off with valid values. Once

again, the component writer can supply these with the intent that they be used as basic operations.

This configuration is illustrated in Figure 20. Unfortunately, there is no way the component writer
can ensure that the reuser will actually use these basic operations. The writer trust the reuser to

always initialize variables so that routines which operate on gpd types are not passed invalid
values. Similarly, the reuser must be relied upon to reclaim resources via the finalize operation.

typ. gp4 type Is limited private;
procedure initialize(data : out gpdtype);
procedure finalize(data: in out gpd_type);
procedure assign(from : n gpd.type;

into : in out gpd ype);
function "="(left, right: n gpd-type) return boolean;

Figure 20. GPDrype with Initialization and Finalization

Given that the above changes are made to the declarations of CommonNodeContents
and gpdtype, notice how significantly the remainder of the package must change'0 . Because all

of the types are limited private, no assignment operator is available for either type. This rules out
the elegant notation used in the original version of the package, presented in Section 1 of Appen-
dix C. Because the type is limited private, the reuser does not have an assignment operator avail-
able for the type. Thus no functions returning the type can applied by the reuser.

This is a good example showing how increasing the generality of a component can
decrease the ease of using it, even after it is tailored. A conscientious designer must carefully con-
sider how the benefits in terms of increased generality trade off against the cost of actually reusing
the component. Once again, the point at which the difficulty of use becomes high is language

dependent.

Also note that because the conceptual context has grown in size and complexity, the com-

ponent is more difficult to tailor. There are more parameters to provide, and more decisions to be

10. The complete text for this modified form of the package is presented in Section 2 of Appendix C.

39



made when a prospective reuser wishes to instantiate this r-.-ep. This is another tradeoff a
designer must make, and is discussed more fully in Section 5.3.

The discussion in this section leads to the following guidelines:

Guideline 4:

Each abstraction should be robust, meaning that it should provide a complete set
of basic operations. The client can only access instances of an abstract type using the

operations exported by the component's concept. Therefore, the operations provided
should be sufficient for the reuser to construct any complex manipulations that are needed

from them.

Guideline 5:

For the abstract types defined in a component, use limited private.

Note that for some applications, and given the current maturity of Ada compiler technol-
ogy, strict adherence to Guideline 5 may impose performance constraints that are unacceptable. In
particular, some real-time applications may not be able to afford the extra cost associated with a
procedure invocation for every basic operation.

If possible, such a situation should be addressed with judicious use of pragma
INLINE 11. Otherwise, the component designer has the option to use other type definitions. The
primary disadvantage of ignoring Guideline 5 is that the abstraction is no longer strongly encapsu-
lated, and changes can thus ripple through the code written by the reusers of such a component.
Further, it limits the possibility of alternative implementations, although this is likely to be less of

a problem in an such an application-specific problem area.

Guideline 6:

Always provide initialize and finalize operators for abstract types.

Again, designers concerned with efficiency may object to this guideline, particularly
because some components can still be correctly implemented without explicitly exporting such
operations. Designers concerned with the costs associated with these operations should consult
[Harms89a]. Further, choosing to provide these guidelines on an "as needed" basis will make it

more difficult for the user to reliably apply those operations to all types in a systematic manner.

[DoD83a. Section 63.21.
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Guideline 7:

When writing a new component that uses other components, always faithfully
apply the initialize and finalize operators. This guideline also applies to component
reusers in general.

Note that some Ada 9X recommendations suggest that automatic support for this capabil-
ity be added during the language revision process. This would alleviate the problems caused by

relying on reusers to consistently apply Guideline 7.

Guideline 8:

All abstract types in the context (i.e., which are generic parameters in the package

specification) should be limited private. Similarly, initialize and finalize operations for

such a type should also be part of the generic formal parameter list. These operations

should be consistently applied within the component's body.

Guideline 8 may also impose some performance penalties, given current Ada compiler
maturity. The same objections mentioned above for Guideline 5 are often voiced for this guide-

line. Unfortunately, the cost of ignoring Guideline 8 is more significant-the resulting component

will be less reusable. Certainly, in some applications it is desirable, or even mandatory, to trade
off reusability for efficiency. However, the component designer should realize this trade off and
make it consciously, rather than consistently ignoring Guideline 8 and thus making the tradeoff

implicitly.

In addition to the above guidelines, the following suggestions are offered as a simple
means of testing the generality of a component's interfaces. Certainly these suggestions are best

suited to smaller components that export simple data types. However, they can be also be applied

to larger abstractions.

Guideline 9:

As a test oi the robustness of both the generic parameters and the exported opera-

tions of a component that defines an abstract data type, consider "composing" the com-
ponent with itself. For example, you should be able to create a "stack or stacks" simply

by taking the exported type and operations from one stack instantiation and using them to
instantiate the same generic again. There is not a general requirement for this capability,
but it is nevertheless a useful way of testing the robustness of both the generic parameters
and the exported operations.
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Guideline 10:

To promote this composability and a uniform view of abstract types, all types
should match the following minimum profile:

type Item is limited private;

procedure Swap(left. right: in out Item);

procedure Initialize(i : in out Item);

procedure Finalize(i : in out Item);

procedure Copy(from : intern;

into : in out Item);

function IsEqual(left, right: in Item) return boolean;

Figure 21. Minimum Operations for Generic Formal Type Parameters

Note that the duplication operation is called copy instead of assign to highlight
the fact that it may be costly, rather than the fact that it can be used to move data. The
names actually given to these operations is of secondary importance, however. It is the
functionality provided by these operations, as well as the number and placement of argu-
ments, that is important for composability.

Although copy and isequal are not primitive operations, they are included
because in the cases where they are needed, the extra cost of constructing them from the
primitives without access to the underlying representation is often prohibitive, as dis-
cussed in Section 6.3. Need for the swap operator will be discussed in Section 5.2.2.

5.2 SUPPORT FOR CONTENT

5.2.1 Multiple Implementations

Now that the idea of a reusable concept has been discussed, the possibility of a family of
implementations for that concept can be presented. Initially though, one might ask what "multi-
ple implementations" of a single concept are and why they are useful. Consider the GPD concept
introduced in Section 3. It defines the functional behavior of a software module without specify-
ing how the type gpdtype or any of its associated operations are actually realized in software.
There are many possible Ada package bodies, all with the same functional semantics, which could
be used to implement the GPD abstraction.

Although all the various implementations, or contents, for this concept are semantically
equivalent, they still differ from one another in subtle ways. In particular, they differ in how they
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utilize resources: processing time, memory, and other application specific resources. The idea of
"multiple implementations" gets it power from the fact that all these versions of the content, are
"interchangeable" from the point of view of functionality. The programmer can choose the one
that has the best resource utilization characteristics for the job at hand.

The idea of a family of implementations for the same concept differs from the idea of a
family of related concepts. In a family of closely related concepts, each variant is an extension of
some core concept. Each variant represents a different combination of extended capabilities. For
example, the following GPD abstractions are a family of concepts:

a. The GPD facility shown in Section 1 of Appendix C.

b. The same facility, supporting operations to save and restore gpdtype variables to and

from a file.

c. The initial GPD facility extended to support persistent GPD structures that continue to
exist from one program invocation to another without requiring the user to save them

to a file or restore them.

These three abstractions are all based on the basic idea of the GPD structure. However, each one is
a different concept-they each provide a slightly different set of operations, or slightly different
behavior, so they are not functionally equivalent. In other words, the three alternatives presented
above each provide a different abstract model to the user.

Given this definition of multiple implementations, consider how such modules might be
implemented in Ada. The simplest way is just to provide several versions of the package body
GPDjpkg. Because Ada enforces the separation between package specifications and bodies, this
can easily be done. There are two significant problems with this approach, however. Both of

them are limitations of the Ada language.

First, Ada requires the representation for all externally visible types to be declared in the
package specification. For private and limited private types, such as gpdtype, this means the
physical representation of the type must be declared in the private section of the specification 12.

This private part limits all package bodies that correspond to that specification. It is a common
trick when declaring a private or limited private type to specify the type as an access type within
the private part. This allows the actual representation to be deferred to the package body using an
incomplete type specification (Muralidharan89a] [DoD83a, Section 3.8.1]. In Section 1 of
Appendix C for example, gpd type is declared as an access type to gpdblock, which is given an
incomplete type specification. The physical representation of the type gpd block is deferred to the
body of GPD.pkg, and if there are multiple bodies it may be different in each one.

12. Some consider the private part to contain implementation detail that hinders reuse [Muralidharan89a].

43



Second, at link time Ada only allows one body to exist for each package specification.
Even if multiple implementations are provided, only one can be linked into an executable. Thus
all clients of a given package within a single Ada program must use the same implementation of
it.

All of these points apply equally well to generic packages in Ada, although generics
make the lack of a solution more debilitating. Even if there are multiple implementations for a
given generic package, a single implementation must be chosen for all instantiations in a single
program.

In addition, generics raise other problems with multiple implementations. For most prac-
tical purposes, recompiling the body of a generic Ada package requires the same amount of
recompilation as if the corresponding specification were also recompiled. Virtually all current
Ada compilers implement generics so that all instantiations of a generic must be recompiled when
the body of the generic changes. This has important implications if switching package bodies will
be used as the method of selecting among alternate implementations.

With these points in mind, only one general-purpose solution is evident: to achieve mul-
tiple implementations in Ada, create a separate package specification/body pair for each imple-
mentation, giving each pair a different package name. Make sure all the specifications look the
same. Then changing implementations can be accomplished simply by altering the package name
in the with clause where the component is brought into scope. Although this idea may offend
some purists, it is the most pragmatic approach to the problem to date.

When implementing this solution, version control of a large number of "parallel" pack-
ages can be a problem. For proper version control of the multiple implementations, one may want
to use a preprocessor, generating all the package specifications from the same source. This
approach might also be used with the package bodies to ensure that common code segments come
from a single source. Alternatively, the common code can be separated out into generics which
are used across several implementations of the same concept. This approach, both for code shar-
ing across multiple implementations and sharing across families of concepts, is nicely demon-

strated in [Musser89a].

In the future, these problems may be solved in several ways. Proposed Ada 9X modifica-
tions suggest adding support for multiple implementations within the same executable to the
language. Alternatively, a module interconnection language for Ada, such as LILEANNA
[Tracz90c], that offers these capabilities may be used.

Also, note that Ada does not support the separation between conceptual context and
implementation context described in Section 2.1. By allowing the package bodies of generic
packages to have their own generic parameters that are independent of those on the specification,
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this support could be added. This would be very useful for directly representing implementation
context, allowing more of the the abstract model of the component to be represented directly in
the language.

Because of this limitation, those portions of the implementation context that the com-
ponent writer wishes to place under the reuser's control should be included as generic formal
parameters of the corresponding specification. Since each implementation will have it's own
specification, this will not interfere with the parameters that are shared by all versions of the com-
ponent.

The following guidelines summarize the approach to providing multiple implementations
for the same reusable concept, as presented in this section:

Guideline 11:

Each implementation of a concept should exist as a separate Ada generic pack-
age. However, all the package specifications for these implementations should be identi-
cal except for the package name. Also, these specifications may have additional generic
parameters added that represent parameters to the corresponding implementation. These
implementation context parameters, of course, are not necessarily uniform across all of the
implementations. Thus, the Ada specifications may also differ in this respect.

Guideline 12:

The Ada package specifications for multiple implementations of a single concept
should come from a common source, for example, using a preprocessor. The Ada pack-
age bodies for multiple implementations should share common code. Use lower-level
generics (see [Musser89a] for an example), or a preprocessor so that common code comes
from a single source.

5.2.2 Data Movement

Although we use limited private types for all our monolithic components, the
generic formal type denoting the item of a structure is typically private, not lim-
ited private. Why is this the case? By requiring a match with a private formal
type, we are asserting that assignment of objects of the type is predefined. If we
required an explicit copy, the computational expense for using a structural com-
ponent would be high [emphasis added]. [Booch87a, page 581]
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This quote illustrates one of the biggest objections programmers raise to the techniques
suggested in Section 5.1-they are "too inefficient." This concern is particularly acute in the real-
time community. This section discusses the root of this problem as well as how it can be over-

come.

As Booch has pointed out, the inefficiency is a direct result of the "copy" operation,
which operates on the generic formal type. Intuitively, it seems that such an operation would only

cause a performance penalty when it was used. Unfortunately, in Ada there is an underlying

assumption that assignment (with "copy" semantics) is the primary method by which data is

moved from place to place. In order to get a value from variable A to variable B you have to use

some form of variable assignment, which copies the value from one location to the other. But

how does this impact reuse?

A "copy" operation involves more work than is initially apparent. Consider "copying,"

or duplicating, an object present at location A into another location called B. This involves three

steps: deleting any object that might be present at B, creating a new object at B to hold the same
information as A, and, finally, duplicating the information at A in the newly formed object at B. If

the object type under consideration takes N memory units to store, then each of the three opera-
tions generally requires O(N) units of time. For "trivial" objects, like integers, the first two steps

do not involve any action at all and the final step is very brief because N is so small. For an
encapsulated data object, such as a stack or a GPD structure, however, all three steps are not only
expensive but also required.

Because of this, it is apparent that the cost of true "copy" semantics, i.e., duplicating the
state of an object, is ordinarily linear in that object's size. Further, consider what happens if a gen-

eric reusable component has such an object type as a parameter and requires a copy operation for
it. Nothing can be said about the performance of that generic independently of its instantiation

parameters. In fact, if the user is considering using this component with nontrivial data struc-
tures, the performance penalty of true "copy" semantics may even be too high for this component

to be reused. For this reason, the assumption that "copy" is the primary data movement opera-
tion is another of Ada's failings, although it follows in the footsteps of most traditional languages.

As an example, consider a stack generic, such as that introduced in Section 2.1, with a

generic formal parameter specification as suggested in Figure 17. If a user wanted to create a
"stack of GPD structures" using this generic, he would have to provide a copy operation for

GPDs. The cost of copying a GPD each time he pushed it onto the stack might be prohibitive,
however. In fact, this design might make the stack component all but useless for nontrivial situa-

tions!

There are several alternatives that overcome this efficiency problem. As one possible

solution, the "copy" operation can be optimized so that it is more "efficient." Alternatively, the
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"copy" operation can be replaced with a "sharing" operation so that the same object can be

referenced in many places rather than duplicated. Finally, it is possible in many cases to eliminate

the copying altogether.

5.2.2.1 Optimizing Copy Operations

First, consider the prospect of optimizing the "copy" operation. The use of the word

optimization here denotes a "safe," semantics preserving transformation. The most effective
copy optimization, known as "copy-on-write," is often found in virtual memory systems

[Tevanian87a]. The premise behind this approach is to postpone the actual duplication of the

object as long as possible. This technique is often called lazy evaluation.

If the object at location A were being copied to location B using lazy evaluation, initially,

the object would not be duplicated at all. Instead, a "virtual" copy of the object would be placed

at B. This virtual object would point to the actual object located at A. This single object would

be shared at both locations, although there would appear to be two distinct objects. No duplica-

tion would be required until one of the objects was changed by some form of write operation. At

the last possible moment, immediately before either A or B were changed, the virtual object at B
would be replaced with a duplicate of the object at A.

As evident from this example, lazy evaluation only increases efficiency if, at least some

times, the duplication never has to be performed. Fortunately, because copying is most often used
to move data values from one variable location to another, there is a significant potential for effi-

ciency gains through this optimization. Unfortunately, however, lazy evaluation of copy opera-
tions is rarely implemented. There are two key problems with "lazy copying" that make it much

less desirable to component designers.

First, if the copy operation for GPD structures were implemented using lazy evaluation,

the change would be in the GPD.pkg body, not in the stack component. Lazy copying is an

optimization of the copy operation itself, not of how the stack component uses the copy operation.

Although installing this optimization in the GPD component will make "stacks of GPD struc-

tures" much more efficient, "stacks of binary trees" will still have the original efficiency prob-

lems. In fact, most concepts would have to be implemented using lazy copying in order to com-

pletely alleviate this problem.

Second, implementing lazy copying is a relatively complex task compared to the more

conventional implementations of "copy." It may add unjustified difficulty to otherwise straight-

forward concepts. While a low level generic that implements lazy copying can be constructed,

many programmers would object to the added layers of procedure calling required. For all of the

above reasons, lazy evaluation of copying is often ignored or specifically omitted. Of course, this

need not be the case in actuality, but it is one reason often raised to excuse the absence of such an
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implementation.

5.2.2.2 Using Structural Sharing Instead of Copying

Now, consider the second altemative-structural sharing instead of copying. By adding
an extra level of indirection through an access type, the "copy" operation can duplicate pointers
rather than copying the object itself. This is a well known technique which programmers working
in many languages use every day to reduce the overhead of assignment.

The disadvantage with this technique is that it results in "aliasing" problems that can
lead to error-prone code which is very difficult to debug. These problems result from the fact that
copying a reference is not the same as duplicating the referenced object. Unlike lazy copying, the
duplication never occurs. The same object is now pointed two from two different locations, lead-
ing to the idea of an object "alias." A write operation from either location affects the value seen
from all locations. Because they are so difficult to find, these aliasing problems are often named
as the largest class of software defects.

The biggest difference between lazy copying and structural sharing is that while lazy
copying hides the details of when to share versus when to duplicate within the "copy" opera-
tion-structural sharing instead places this responsibility on the user of a component. It is up to
the user to manage all the aliasing problems by deciding when to "share" and when to "dupli-
cate." Usually, it is also the user's responsibility to remember whether the assignment statement
for a given type actually duplicates data or introduces structural sharing.

Because the copy and aliasing operations are semantically different, components written
expecting a copy operation, such as the stack component, may have different semantics if they are
given an aliasing operation. In particular, operations such as copy, clear, and is equal on the type
stack may all have their semantics altered by the addition of a level of indirection and the use of
an aliasing operator instead of a copy operator.

However, this is the approach that Booch and other authors have suggested to alleviate
the efficiency problem. Unfortunately, components that place the responsibility of managing
aliasing behavior on the user are poorly abstracted and encapsulated. The details of how opera-
tions are implemented to gain efficiency should be completely hidden within the content of a com-
ponent, not placed on the user's shoulders.

This does not mean that structural sharing inherently violates encapsulation or abstrac-

tion, only that such sharing should be completely controlled within a component. As Booch
notes, sharing is an important part of many useful abstractions. Relatively simple reference count-
ing schemes are sufficient to hide this detail completely within a component 3 . Section 2 in

13. Such schemes do require the use of finalization operators, as suggested in Section 5.1.
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Appendix C shows a version of the GPDpkg specification for such a package. Note that struc-
tural sharing is still part of the GPD abstraction, although the sharing is only introduced through

operations exported by the package, not by a built-in assignment operator. This allows the

module to completely control all ramifications of the sharing, preserving the semantics of sensi-
tive operations such as clear, copy, is_equal, and finalize.

5.2.2.3 Eliminating Copy Operations With Swapping

Now consider the final prospect of removing the "copy" operations completely. Are

there other ways of moving data than copying? Douglas Harms and Bruce Weide suggest that
"swapping" may be a more effective data movement operator in [Harms89b]. When two objects

stored at locations A and B are "swapped," the object stored at B is not destroyed, no new object

is created, and no duplication is necessary.

Where it is possible to use swapping instead of copying, swapping is a very big win in

terms of efficiency. While the exchange of the two objects is apparently an O(N) operation just as
copying is, it is much easier to optimize than "copy." By adding an extra level of access types as

Booch suggests in the quote above, one can swap references to objects instead of swapping the
objects themselves. Unlike copying, however, swapping references is semantically equivalent to
swapping the objects pointed to by the references.

Also, note that the efficiency of swapping references to an object does not depend on the
size of that object. Instead, it depends on the size of the reference. Assuming that all references
are (approximately) the same size, all swap operations can thus be implemented in 0(1) time!

Unfortunately, swapping cannot replace copying under all circumstances. The two
operations are not "semantically isomorphic"; in other words, they are not equivalent in terms of
what they can be used to do. Copying can be used to "create" entirely new objects that are dupli-

cates of existing objects, while swapping can only be used to "move around" objects that
currently exist. This means that there are times when swapping cannot be used instead of copy-
ing.

& Fortunately, in most cases where copy operations are currently used, the actual duplica-
tion of objects is not needed-only object movement is required. This is why lazy copying works
so well as an optimization; the duplication can be avoided most of the time because it is not actu-
ally needed. For straightforward components like stack abstractions, the most common operations
are putting data into the structure, or retrieving data from the structure. Conventionally, copy
operations are used for both of these tasks, when a swap would be just as effective. "Inserting"
or "removing" a GPD structure from a stack makes much more sense than "duplicating" it into
the structure and then "duplicating" it back out again.

49



Because swapping cannot fully replace copying, copying will still be required in some
places. By choosing "swap" as the primary method of data movement within components, how-
ever, the clients of a component have to explicitly choose to use operations with copy semantics,
rather than be faced with the performance penalties of copying in every operation.

Use of "swap" instead of "copy" as the primary data movement operator in this way
addresses both the efficiency problem of explicit copying and the unnecessary complexity prob-
lems that structural sharing introduces. Although Ada doesn't provide "swap" as a primitive
operation, component writers can export it for clients. Most importantly, it allows the construc-
tion of strongly encapsulated abstractions which are efficient and maintain their integrity rather
than placing burdens on their clients. Figure 22 shows how the primary operations for a type
exported by such a component might be declared.

type gpd _type Is limited private;
procedure initialize(data: out gpdjtype);
procedure finalize(data : in out gpdrpe);
procedure swap(lef. right: in out gpd..type);
procedure assign(from : In gpd-typW;

into : in out gpd type);
function "="(left, right: in gpdype) return boolean;

Figure 22. GPDtype declared with Swap in Addition to Assign

Note that changing to swapping as the primary basis for data movement affects many of
the other operations exported by a unit. To examine this effect, consider the different types of
operations available on a data type. Booch offers this taxonomy of operations [Booch87a, page
201:

a. Constructor-An operation that alters the state of an object.

b. Selector-An operation that evaluates the current object state.

c. Iterator-An operation that permits all parts of an object to be visited.

Both constructors and selectors are implemented using a "copy" operator in a conven-
tional language. When applying swap-orientef' --ogramming techniques, however, the most com-
mon form of operation is more aptly termed an accessor. An accessor allows the client to
"swap" some portion of the object's state with the contents of some variable in the client's rou-
tine. By using the accessor to examine portions of the state and then to replace those portions
back into the object, the client has the functionality of a selector. Also, the client could modify his
local variable before swapping it back into the object, or use a completely different source for the
object state, to achieve the functionality of a constructor. All of this can be done without resorting
to copying, resulting in reusable components which are efficient regardless of how they are

50



tailored (instantiated).

Section 3 in Appendix C contains a version of the GPD component rewritten to take

swapping into account. The major differences are in the following operations:

a. accesscontents (previously, getdata and put-data).

b. integer node_pkg.accessdata (previously, get-data and put-data).

c. boolean-node pkg.access-data (previously, get-data and put-data).

d. parent nodepkg.access_child (previously, get-child and putchild).

Finally, there is the question of whether a "copy" operation for an abstract type should

be provided at all. Initially, it appears that one is necessary, since swapping cannot be used to

build a "copy" operator. Surprisingly, a "copy" operation on an abstract data type is often not

required. If accessors for all of the sub-parts of an abstract object's state are provided, and copy
operations are available for all of these subparts, a "copy" for the composite object can be con-

structed. More importantly, such a "copy" operation built from the available primitive opera-

tions is often as efficient as a "built-in" copy operator-within a constant factor for the overhead

of procedure calls.

In [Weide86a], the following distinction is made for such operations:

Some operations will be essential (primary operations) and others merely con-
venient (secondary operations), in the sense that the latter could be implemented
using the former. Usually, you should not include a secondary operation in a
basic facility unless you anticipate that its implementation in terms of other
operations will suffer more than a constant factor performance degradation from a
realization that has access to the representations of variables.

While this recommendation is desirable, in practice it is often important to include the secondary

operations copy and isequal for an abstract data type. The reasoning behind this exception is
given in detail in Section 6.3.

5.2.2.4 Guidelines on Data Movement

As a result of this discussion on data movement, the following guidelines were

developed:
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Guideline 13:

Aliasing behavior (structural sharing) is the responsibility of the abstraction, not

the user! "Structural sharing" semantics are often useful, but all basic operations must

maintain the same semantics (in particular, finalize). Users should not be able to create

aliases in an uncontrolled way (say, through use of the built in assignment operation).

Instead, they may only call operations in the abstraction, which will then create aliases on

their behalf (i.e., the package/abstraction must always maintain control over structural

sharing).

This guideline is somewhat controversial, particularly among programmers concerned

with efficiency. Many of the objections raised to Guidelines 5 and 8 are also raised here. How-

ever, another significant objection applies to Guideline 13.

Adhering to Guideline 13 may require a much more complicated implementation. This

is of particular concern for component writers who are trying to write new components as part of a

current development effort. The extra cost involved in following this guideline may not be justifi-

able within the context of that project's needs.

However, components that not only support but encourage explicit, uncontrolled aliasing

by the reuser are more expensive to reuse. Such components encourage, or even require, the

reuser to use them in ways that are error-prone, as mentioned in Section 5.2.2.2. Rather than place
the burden of debugging such behavior on every reuser, Guideline 13 suggests that this behavior

be captured and controlled within the component. Although the component may be more expen-
sive to create and debug, the goal is to eliminate these bugs in one place. Then, all of the future

reusers can benefit from it rather than duplicating the effort.

There are certainly cases where it is more pragmatic to ignore Guideline 13. However,

the component designer should understand the reasoning behind this recommendation before he

chooses to do so.

Guideline 14:

Do not use the built in assignment operator as the basic data movement operator.

Do not replace it with a copy operation. Instead, use a swap operation.

As indicated in Section 5.2.2.3, consistently using the assignment operator for moving

values from one location to another is not scalable to large abstract data types. In particular,

many of the efficiency concerns expressed about reusable components are exacerbated by this

approach. Guideline 14 is aimed at directly addressing this problem by providing an alternative

option that can be scaled to large structures without efficiency penalties. Although this is a
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nontraditional approach, designers who choose to bypass this guideline should understand how

reuse of their components will be affected by efficiency concerns.

Concern over producing components that do not suffer efficiency penalties for dealing
with large abstract data types is also reflected in the following two guidelines that support the con-

cepts developed in Section 5.2.2.3:

Guideline 15:

Every component should define a swap operation on its abstraction.

Guideline 16:

All operations Booch would classify as "constructors" or "selectors" should be

designed using "swap" semantics, not "copy" semantics. The one name/one object

paradigm Booch uses is the correct approach, although assignment/copy is the wrong

underlying data movement primitive.

The final guideline suggested as a result of Section 5.2.2 is also concerned with efficient

implementations. Because the swap operation cannot completely replace copying, there will

occasionally be need for a copy operation. For efficiency, in Ada it is often desirable to provide

this operation, as well as a equality comparison operation, even in basic components. Again, Sec-

tion 6.3 discusses the reasoning behind this recommendation. Also note that this recommendation
is made because of efficiency concerns present when using the Ada language. Other languages

may not impo,, he same penalties on operations constructed this way.

Guideline 17:

Provide copy and isequal operators for all abstractions. Although these are

really secondary operations, in the cases where they are needed, the additional costs of all

the proceduie calls involved in building one using primitive operations is unnecessary.

5.2.3 Table-Driven Programming

Table-driven programming is a common technique of advanced programming which,

unfortunately, appears in computer science literature very infrequently. It is useful wherever

dynamic, interpretive behavior is an advantage.

A table-driven algorithm is centered around a data structure often called a "dispatch

table," "procedure table," or a "state table." The basic idea of operation is simple-input data

is used to "index" into the table to determine what routine or code segment is to be executed
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next. Moreover, the contents of the dispatch table can be modified to add, replace, or remove

entries. This makes table-driven algorithms ideal for applications that need data-driven control of
execution, particularly execution of user-supplied routines. Because such table-driven systems

can be easily changed and extended without! modifying their source code, they are ideal for several
classes of reusable components.

The most common example of a table-driven system is a programming language inter-

preter. Often, an interpreter is centered around a "translation table" that indicates how each basic

operation in the interpreted language is to be implemented. If the interpretive language allows the

user to define his own procedures or functions, these can be added to the basic table or stored in a

supplementary table. The program being interpreted is then viewed by the interpreter as an
incoming data stream, and this data is used to index into the translation or dispatch table(s). Some

programmers consider the use of data to drive the control flow in this way as the essence of
interpretation. A good example of such an interpreter is given in [Abelson85a].

Also, many object-oriented (00) languages use table-driven techniques. As part of the

run-time environment, a message dispatch table, or even a set of tables, is built. Then when mes-

sages are invoked, a "key" based on the message is used to index into the table(s), and control is

dispatched to the appropriate point. The message dispatch tables can either be built into the run-

time by the compiler in an static 00 environment, or constructed and modified on the fly in a

more dynamic environment. A good example of how such mechanisms are used in practice is

given in [Cox86a].

Dispatch tables for table-driven systems are often constructed using "procedure vari-
ables." Unfortunately, Ada does not provide true procedure variables. This is another failing that

inhibits the construction of some forms of reusable components. To show how a simple table-
driven system can be useful in an Ada component, as well as how one is implemented, consider

extending the GPD concept.

procedure save(file In text iofile type;
gpd: In gpd type);

-- In effect, a "copy" of GPD is placed on the FILE.

procedure restore(file : in te.xtio.fle_type;
gpd: in out gpd type);

The GPD parameter of RESTORE is mode in out so that its previous
-- value can be finalized before the new structure is assigned to i.

Figure 23. New operations for GPDtype

First, consider adding the operations shown in Figure 23 to the GPD specification. The

save operation would allow any GPD structure to be written to a file, while restore would read

such a stored structure back from a file to create an in-memory version. To see how this might
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affect the use of the package, consider a GPD component being used to implement a tree-struc-
tured intermediate representation in a compiler. These new operations will allow the compiler to

save intermediate structures into a compilation library as well as reload information about previ-

ously compiled units.

Now imagine extending the GPD concept so that in addition to the predefined types of

integer and boolean, any user-defined type could be stored in a GPD leaf node. How could this be
implemented?

Writing the specification for such a node type is a relatively straightforward task. A

user defined node_pkg should be added along side emptynodepkg, integernodepkg, and

boolean_node_pkg. Because this package must be able to work with any user-defined type, it

should be a generic. At first guess, such a package would look like Figure 24.

generic
type user-defned-data is limited private;
with procedure initialize(data: in out user.defined-data);
with procedure finalize(data : in out userdefineddata);
with procedure swap(left In out userdefineddata;

right In out userdefined-data);
package user defined node_pkg is

procedure new-node(data In out userdefineddata;

node in out gpd_type);
procedure access.data(node in out gpd_ype;

data in out user_defineddata);

end user_defined_nodepkg;

Figure 24. Generic for a User-Defined GPD Node

Figure 24 is not quite complete, however. In order for the save and restore operations to

be able to do their jobs, the user must also provide write and read routines for his user-defined
type. This results in Figure 25. Note that Figure 25 is as simple as possible for this example, but
in general. a slightly different interface for save/restore procedures may be needed, - described in

Section 9.5.

Unfortunately, actually implementing the save and restore operations in Ada is much
more difficult. In another language, such as C, the programmer could simply use an untyped
pointer to store data of a user-defined type, tagging it with some form of "type" tag so that the
appropriate read and write operations are called when the time comes. Then, as users "register"

new user-defined types, pointers to the re, - and write routines for each new type are added to two

separate tables. Save and restore would then use the "type" tags stored with the data to call the
14correct user-supplied routines in order to accomplish the desired mission

55



generic
type userjdefined_data is limited private;
with procedure initialize(data : In out userdefined_data);
with procedure finalize(data in out userdefined-data);
with procedure swap(left In out userdefined_data;

right in out userjdefined-data);
with procedure read(file In text_io.file-type;

data n out user defineddata);
-- The DATA parameter of READ is mode in out because READ
-- FINALiZEs the incoming value of DATA before placing the
-- result of the READ operation in it.

with procedure write(file in textjo.fileype;
data in user_defineddata);

-- In effect, WRITE sends a "copy" of DATA to FILE.
package user-definednode__pkg is

Figure 25. Complete Set of Generic Parameters for the User DefinedNodePkg

In Ada, the lack of procedure variables frustrates this approach. Many experienced Ada
programmers will suggest using tasking in place of procedure variables, since pointers to tasks are
allowed. While this approach will work, it is often implemented inadequately.

The tasking features of most Ada implementations are significantly less efficient than
procedure calls. Because of this, programmers often try to optimize the number of rendezous
required to perform a given function. Rearranging the code in order to reduce the inter-task com-
munications requirements can often distort simple designs into very complex ones. A system that
might have a very simple conceptual design as a table-driven system can turn into a morass of
tasks.

Alternatively, some programmers may sacrifice the dynamic benefits of table-driven pro-
gramming, using a large case statement as a dispatch table. While this will work for relatively
static systems, it has none of the dynamic adaptability that a true table-driven has. For example,
statically implementing the read and write dispatch tables in the save and restore operations on
GPDs would restrict the flexibility of the component. There would only be a fixed set of prede-
fined read and write operations which the user could select from when creating a new kind of
user-defined GPD node. To add new operations to the table would require alteration of the source
code for the component. Also, with a case statement as the dispatch table, table entries cannot be
added, changed, or removed at run time.

Rather than using either of these two approaches, the superior alternative of creating a
reusable component defining the abstraction of a procedure variable is suggested. Such a

14. The finalize operation for gpd type must be able to call the various finalize operations on the user-defined types as
well. It can be implemented using table-driven techniques as in the same way as the save and restore operations.
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component is illustrated in Figure 26. Given an abstraction such as this one, implementing a

table-driven algorithm is very easy. The question then shifts to the package body of the procedure
variable component-how can it be implemented to address the above problems?

generic
type arg_type is limited private;
with procedure initialize(data : In out arg type);
with procedure finalize(data: In out arg-type);
with procedure swap(left In out arg..ype;

right in out arg.ype);
package Procedure-VariableAbstraction is

type procedure variable Is limited private;
procedure initialize(data : In out procedure-variable);

-- This initializes a procedure variable to the conceptual
-- value "NULL." This must be executedfor each procedurevariable
-- declared.

procedure finalize(data : In out procedure-variable);
-- This releases all resources associated with a procedure variable.
-- It must be executed on each procedurevariable before that
-- variable goes out of its defining scope.

procedure swap(left in out procedurevariable;
right in out procedure_variable);

function procedurevariable_is.nuU(pv : in procedure-variable)
return boolean;
.. Return TRUE iffPV has the conceptual value "NULL,"
.- return FALSE otherwise.

procedure reset_procedurevariable(pv : In out procedure-variable);
-- Sets a procedure variable to the conceptual value "NULL."
-- This routine is most often used to "erase" the value of
-- a used procedure variable.

generic
with procedure P(a: in out argype);
-- P should not access any variables outside itself (either
-- global variables or variables in surrounding transient
-- scopes).

package Procedure-Definer Is

procedure set_.procedurevariable-to P(pv : In out procedure-variable);
-- Sets PV to conceptually "point to" the procedure P.

end ProcedureDefiner;

procedure invoke__pocedure(pv In procedurevariable;
a in out arg_type);

-. If PV has the conceptual value "NULL," no action is taken.
-- If PV "points to" some procedure P, P is invoked with
--A as its argument.

LNmtnrrLLZ PV : exception;
-- This exception is raised if a variable of type PROCEDUREVARIABLE
-. is declared and then passed to an operation before INITIALIZE
-- has been called on it.
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private
type pv_ block;
type procedurevariable is access pv-block;

end Procedure-Variable-Abstracuon;

Figure 26. Procedure Variable Concept

As a first cut, it is possible to use Ada's tasking features to implement the procedure vari-
able abstraction. As mentioned above, many programmers have used tasking for this purpose.
Figure 27 shows a Buhr diagram of the tasking interactions used to implement this abstraction.
The Ada code for the corresponding package body is provided in Appendix C, Section 7.

ProceuVProcedure lAbstracon
arguments. proce-dure variable / g°-be tween-tvype

invoke-procedure Ced inoarse/

?arguments

argumentsi ProcedueDefiner

arguments ar guments

[user-defined procedure]

Figure 27. Buhr Diagram of a Tasking Implementation of Procedure Variables

The advantage of encapsulating the tasking implementation of procedure variables is the
clean separation it produces between how procedure variables are used in the table-driven system
and how procedure variable services are actually provided. This separation ensures that the
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design of the table-driven system is not concerned with the details of the tasking. The design will

be more consistent because there is no opportunity for it to be compromised by the optimization

of inter-task communications. The benefits of such a unified and simple conceptual model can be

great, especially during maintenance.

Unfortunately, in addition to being the strength of this approach, the encapsulation of

implementation details is also its major weakness. The fact that there is no opportunity for optim-

izing task operations can be a significant drawback, despite the benefits this limitation provides.

Some programmers consider the weight of this restriction to be a strong argument against encap-

sulation in some cases. Fortunately, difficulties such as this can usually be turned into advantages.

In particular, by encapsulating the procedure variable implementation, the possibility of

alternate, more efficient implementations is opened. While the package body presented in Section

7 of Appendix C has the advantage of being portable to all machines, it is possible to sacrifice por-

tability to gain efficiency.

The most common way of efficiently implementing procedure variables is to use the

predefined ADDRESS attribute. When used on a program unit such as a procedure, this attribute

returns the address of the first memory storage unit allocated to that program unit. For many com-

mon machine architectures, such an address can be turned into an indirect procedure call easily.

This can be done either through machine code insertion within Ada, or by using the INTERFACE

pragma to call out to another language. Both methods are non-portable. Section 8 in Appendix C

shows a version of the Procedure .VariableAbstraction package body which interfaces with a C

routine to invoke the pointer. Section 9 in Appendix C shows the corresponding C routine.

The difficulty with this implementation is that it fails to account for the "access link" of

the procedure held in the procedure variable [Aho86a, page 4181. The term "access link" is used

here to refer to the method used by the compiler to allow access within a procedure to variables

declared in surrounding scopes, whatever that method might be. Because the surrounding scopes

of a nested procedure may only exist temporarily, special care needs to be taken when nested pro-

cedures are assigned to procedure variables. If a procedure variable containing a nested procedure
is invoked after its enclosing scope has been exited, nonlocal references made by that procedure

may be invalid.

In order to address this problem, the specification in Figure 26 was written using a simple

solution-procedures assigned to procedure variables shall not access nonlocal variables. This

restriction is not the only solution to the access link problem, but it is the easiest to implement

when creating a procedure variable abstraction as a new user-defined type in Ada. By adding this

constraint, the optimization of Section 8 of Appendix C is likely to work without changes for

many more compilers. Unfortunately, this restriction limits some of the usefulness of procedure

variables. However, this restriction can be relaxed, if necessary.
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For cases where a shared set of nonlocal variables between procedures and procedure
variables is needed, an extended solution is possible. By replacing the specification of the Pro-
cedureDefiner subpackage with the version shown in Figure 28, the Procedure Vari-
able-Abstraction can be extended to allow the user to specify the type of "environment" each

procedure variable executes within. The user of the abstraction can then place nonlocal values
accessed by procedure variables in an "environment." Procedure variables, as well as other user-
defined routines, can share access to a single environment, or have independent environments for
nonlocals. For the implementation of this unit, the type pv block can be extended to contain a

pointer to the environmental data for each procedure variable.

generic
type environmentjtype Is limited private;
with procedure initialize(data: In out environmenr_type);

with procedure finalize(data : In out environment_type);
with procedure swap(left In out environment-type;

right In out environmenttype);

with procedure p(a : In out arg.jype;
e :In out environmentype);

package Procedure-Definer Is

procedure set-procedurevariable-toy(
pv n out procedure-variable;
e in out environmentjtype);
-- Sets PV to conceptually "point to" the procedure P.
--Also takes the environment E and puts it in PV (upon

.- conpletion, E has the value given by "initialize").
Whenever PV is invoked. P will be called with E as

-- one of its parameters.

procedure accessprocedureenvironment(
pv in out procedure.variable;
e in out environment type);
-- "Swaps" E with the environment stored in PV.

end ProcedureDefiner

Figure 28. Modified Procedure Definer which allows Shared "Environments"

Fortunately, encapsulation of the abstraction allows both versions of the package to be
provided. An optimized version of the procedure variable abstraction can be used on machines
where one is available, and the completely portable version is ready as a backup for machines
where an optimized version has not yet been written. This addresses both the efficiency and por-

tability problems of table-driven systems, which are so useful in constructing flexible, reusable

components.

60



Because procedure variables are so commonly used, there have been many recommenda-
tions for them to be included in the Ada 9X revision process. This encapsulated procedure
abstraction is also upwardly compatible with any 9X changes. If procedure variables are sup-
ported in the new language revision, only the body of the ProcedureVariable Abstraction pack-
age needs to be rewritten, providing an implementation which is both efficient and portable. In
addition, if the abstraction were supported at the compiler level, a less inhibiting solution to the
access link problem could be provided.

5.3 SUPPORT FOR CONTEXT-PARAMETERIZATION MANAGEMENT

Failure to provide complete encapsulation, a facility which is necessary to effectively

separate context from the concept, has already been addressed in Section 5.1. The second class of
features which support context are "parameterization management" features. These features are
language mechanisms that allow a person to deal with a very large context-i.e, a large number of
parameters. These features are named after the parameterization management problem, originally

introduced in Section 2.6.

It is often stated that the biggest potential benefits from reuse come from reapplying rela-
tively large components [Biggerstaff87a]. Intuitively, this idea makes sense. It is cheaper to reuse
a whole subsystem consisting of 10 subcomponents than to reuse 10 smaller individual com-

ponents and integrate them together yourself.

Unfortunately, as a component grows in size, the amount of functionality it encompasses
also grows. Likewise, the number of choices that should be left up to the reuser so he can tailor
the component also grows. In other words, larger components have more parameters, using what-
ever parameterization mechanism(s) the language of concern supports' 5.

Also unfortunately, as a component grows in size, and as the number of "layers"'16 that
are used to define that component grow, the size of the context-the number of parameters-
grows more than linearly. In f.,:ct, it grows exponentially. This is not surprising, considering the
rates at which other factors increase with code size.

This growth rate also results from the fact that larger components are often constructed of
smaller components. Certainly, the larger component will choose some parameter values for such
a subcomponent. However, the larger component should only choose values for the parameters
that are determined by the way in which this subcomponent is being used. In order to be a flexible
as possible, parameters that are not determined by the structure of the larger component should be
deferred to the reuser. Thus, the "unbound" parameters of the subcomponent are included as part
of the context of the larger component.

15. See Section 2.3 for a description of parameterization mechanisms.
16. See Figure 4, which depicts a layered system of components.
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This indicates that at some point, the size of the context will grow large enough that an
average person cannot effectively deal with it. In fact, Miller's "magical number seven, plus or

minus two," [Miller56a] indicates that it will not take long for a component to reach the point

where it is difficult for a reuser to tailor such a component. Miller's work indicates that the
number of separate pieces of information a person can hold in short term memory is very limited.

Short-term memory imposes one of our greatest limitations in building large
software systems, because it prohibits us from being able to consciously attend to
and manipulate all of the interacting parts of a complex system at once.
[Curtis89a, p. 270

Fortunately, this limit to human capability can easily be overcome by chunking related pieces of
information into a new, larger unit. Unfortunately, however, an unstructured group of parameters

can be difficult to chunk effectively. Further, the fact that context size may grow as much as

exponentially indicates that the point where the size will be difficult to deal with will be reached
while components are relatively small.

To see how this realizes itself in Ada, consider a component that has seven generic for-

mal types, each of which represents a different abstract data type. In the generic formal part of the
Ada package specification, there would have to be generic parameters for each of the types, and all

of the basic operations on those types ( initialize, finalize, swap, copy, and is equal). This alone

could result in as many as 42 generic parameters! But this is still a small component by com-

parison, because no mention has been made of any subcomponents it uses, or the parameters that
might be added to the larger component to tailor these subcomponents. In addition, these parame-
ters have a natural organization that leads to chunking. But the shear size and complexity the

reuser is presented with on reading the specification has an impact that can be intuitively felt.

The parameterization management problem, then, is the problem of finding mechanisms

by which reusers and designers alike can cope with the expanding contexts of medium and large

components. Unfortunately, and despite section 2.3, there is no commonly accepted model of
what parameterization (i.e., tailoring) actually is, or how it should be used. Thus, although several

existing language mechanisms have been proposed as potential solutions to the parameterization

management problem, there is no way of knowing how much, if any, of the problem they address.

Although this paper does not offer a complete solution to the parameterization manage-
ment problem, some potential parameterization management mechanisms can be presented.

Although there is little more than intuitive evidence that these mechanisms -will solve the prob-
lem, they certainly offer an improvement over Ada's current situation. Proposed solutions

include:
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a. Inheritance mechanisms

b. Modularly structured parameters, as in [Goguen84a] and [Tracz90c]

c. Partial instantiation of generics

d. Package types, which can be passed as generic formal parameters

It is also worth noting that the majority of these approaches suggest trying to impose a structure
on the parameters so that they can be naturally chunked without significant effort.

Although the GPD concept presented in Section 3, because of its simplicity, does not
illustrate how such features would be used, it is clear that Ada does not provide them. Instead,
generic parameters in Ada exist and are declared using a flat, unstructured approach, exacerbating

the problem. Several recommendations have been made to include some of these mechanisms,

particularly partial instantiation or package types in the Ada 9X revision to rectify this problem,

but no underlying model of parameterization has been proposed.

Because there is no work-around available within the confines of the Ada language itself,
the parameterization management problem can force component designers to choose less reusable

designs. As Guideline 3, presented in Section 4.3, states, the most desirable case is reached when

all of the parameters to a component's concept are represented as generic parameters. However,
the component grows more difficult to understand and use as the number of these unstructured

parameters grows.

As a result, the designer may reach a point of diminishing returns where making the com-

ponent more flexible makes it overly difficult to use. Component writers must be aware of this
problem, and must carefully temper adherence to Guideline 3 to ensure that the potential for reus-
ing the resulting component is acceptable.

It should also be clear that the conditions under which this point of diminishing returns is

reached are dependent on the tailoring mechanism being used. The mechanism being used is in

turn dependent on the language being used. In this case, Ada, and Ada's generic parameterization
mechanism, are being used. Different languages or tailoring mechanisms may influence how soon
the point of diminishing returns is reached. Also, this perspective allows one to view the alterna-

tive solutions presented previously as providing new tailoring mechanisms that push this point

farther away, so that programmers can deal effectively with larger and larger amounts of context.
For now, however, the component writer should be aware of this problem and how it can cause

exceptionally general components to be less reusable.
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6. AREAS WHERE DESIGN DECISIONS COMMONLY RESTRICT
REUSABILITY

Section 5 describes some of the subtle concerns that arise when designing reusable com-
ponents in Ada, and that are based on the peculiarities of that programming language. However,
there are additional concerns that arise not from inherent limitations of the language itself, but
rather from design or implementation decisions that were made without considering their impact

on reusability.

When a software engineer or programmer creates a new module, he often has a natural
tendency to optimize the design of the module to the requirements as he sees them. He may even
use very specific information about the problem the module will be solving to drive not only the
algorithm selection, but also the design of the module's interface. Knowledge about other
modules that will work in conjunction with the one under consideration may also influence the
design of the interface. While this skill is very valuable, particularly in the design of modules for
embedded or real-time systems, it can lead to less reusable components.

Because no software components industry currently exists, it is reasonable to believe
reusable components that will be written in the near future will be written as part of a specific
software project. It is also likely that the design of these components will be driven first by the
needs of a specific application, and driven by reusability and generality concerns second. While
this approach may be sound economically, it is possible that it may lead to implicit assumptions,

for example, about how the module interacts with the remainder of the application, that are
designed or written into the component. This is most likely not a failing of the engineer or pro-
grammer, but rather a result of the single-application-oriented requirements, which did not

describe a generalized component.

In order to assist such component designers in the process of generalizing application-
specific components into more general ones, this section presents several common failings of
components that were intended to be reusable. The common concerns highlighted here are
memory management approaches, concurrency protection models, iterators for abstract data types,
and save and restore operations for abstract data types. By presenting these concerns to the com-
ponent designer, it is possible to bring out the various design decisions that are often very impor-
tant for reusability, but which may be made implicitly, without thought, if they do not appear in
the application-oriented requirements for a module.
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The following subsections describe the most common areas where component writers fail
to consider the impact on reusability. These sections are based loosely on Booch's component
taxonomy [Booch87a], which very roughly categorizes components based on how they address
each concern.

6.1 MEMORY MANAGEMENT

Management of dynamically allocated memory is perhaps one of the most well known

problems when dealing with reusable components, because it is such a common part of data struc-
ture implementations in general. In the case of a reusable component that exports an abstract data
type, memory management involves the method of allocating space for new objects or objects that
are growing, and reclaiming space from objects that are no longer needed or that are shrinking.

For the purposes of this section, consider the requirements that a particular memory management
scheme places on the component user. What responsibility does the user have in the memory
management scheme, and what portions of the scheme are visible to the user?

While there are many approaches to memory management, a large number of all imple-
mentations fall under one of ten basic "models," from the component user's point of view. These
models are differentiated depending on how they deal with four basic questions:

a. Is memory space reclamation handled by the component, or left up to the language
run-time system or operating system?

b. Does the user actively participate in the memory management process?

c. Is the memory management portion of the component protected against use by con-
currently executing threads of control?

d. Are there limits on the total amount of memory that can be used by the component?

For each of these questions, there are apparently two common answers, and the combina-

tions of answers result in the ten "mainstream" memory management models17 . While there are
many other alternatives, including hybrid schemes, these models seem to be the most prevalent
among dynamic data structure modules. The common facets of these memory management

models are:

a. Is memory space reclamation handled by the component, or left up to the language
run-time system or operating system?

(1) Unmanaged components provide no mechanism for space reclamation,

usually relying on the underlying run-time system to provide automatic
garbage collection.

17. Not all combinations of answers result in useful memory management schemes, for example, explicitly unmanaged.
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(2) Managed components do provide a mechanism for space reclamation.

b. Does the user actively participate in the memory management process? (This question

only applies to managed components.)

(1) Explicitly managed components require the user to call some form. of

"free" or "deallocate" routine in order to explicitly reclaim space.

(2) Transparently managed components do not require any explicit action on

the user's part to "free" unneeded memory space. Instead, they usually

implement some local form of garbage collection within the component.

Such components often rely on the user to consistently call the appropriate

finalize operations on variables when they are leaving scope.

c. Is the memory management portion of the component protected against use by con-

currently executing threads of control? (Again, this question only applies to managed

components.)

(1) Controlled components are built so that exported free or finalize routines
work correctly even if simultaneously executed by multiple threads of con-

trol.

(2) Uncontrolled components require the corresponding free and finalize rou-

tines to only be executed by one thread of control at a time.

d. Are there limits on the total amount of memory that can be used by the component?

(This question applies to both managed and unmanaged components.)

(1) Limited components have an upper bound on how much memory can be

consumed by all of the active objects of the exported abstract data type at
one time. For example, a linked list abstraction may allow the reuser to set

an upper limit on the total amount of memory that may be used by all of the

lists that are currently allocated.

(2) Unlimited components do not allow the reuser to place a bound on their

memory consumption.

While there are many other alternatives available, these memory management categories

are the most commonly used. The disadvantage of using another memory management technique

in a reusable component is that such an. -)proach will make the component more difficult to

understand and use, from the user's persp tive. There is certainly such a place for such alterna-

tive schemes, but component designers should be aware of the commonly understood approaches,
as well as the potential effect on reuse when deviating from them.
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In addition, the labeling of reusable components with their memory management
approach would be helpful. Not only would it be a small step toward making the components
more understandable, but it would also help greatly in the component selection process. For
example, a reuser trying to select a component for use in an embedded system could easily see
whether it was designed to be limited or not. A preliminary pass at a labeling scheme based on
this concept is presented in Appendix A.

6.2 CONCURRENCY

Another concern component designers have is that of "hardening" components against
concurrent access. This concern arises from the fact that Ada provides constructs to explicitly
describe concurrent threads of execution within a single program. As a result, component
designers must explicitly address the problem of more than one Ada task simultaneously access-
ing the operations within a component, or simultaneously accessing the same object of some
abstract data type exported by the component.

The tradeoff between protection and efficiency is often at the heart of discussions about
protecting components from concurrent access. Clearly, a component which does not address
concurrency protection is less reusable, since it will be difficult to employ in a program that relies
on tasking. However, the inefficiency of many concurrency approaches may make a concurrency
hardened component less desirable in more conventional programs.

This conflict has led to quite a few concurrency protection approaches. Component
designers, trying hard to provide maximal protection with minimal efficiency impact, often create
"custom made" protection schemes for new components. Unfortunately, exotic protection
schemes often have a steep learning curve. Such schemes can also offer traps to the unwary, lead-
ing to hidden race conditions or protection failures which are hard to track down and eliminate.

Because of the variety of methods that are currently used in concurrency protection for
Ada components, no complete taxonomy is provided here. Instead, a very rough categorization is
provided, based on Booch's work [Booch87a, pp. 41-42):

a. Sequential components provide no concurrency protection whatsoever.

b. Shared components provide concurrency protection for the internal state, both hidden
and visible portions, of the package (or instantiation) exporting the abstraction (for
example, internal hash tables, caches, etc.). Shared components do not, however, pro-
vide any built in protection for objects of the exported abstract type(s). Multiple
threads of control can "share" the facility, although they must provide some other
protection mechanism of their own to share objects from that facility.
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c. Guarded components ensure that each object of an exported abstract type has some
form of abstract "lock," but multiple threads accessing a shared object must obey the
associated "locking" conventions. In other words, the necessary framework for
mutual exclusion at the object level is provided, but it is up to the client tasks to assure
that mutual exclusion is maintained by obeying the conventions of this framework.
Note that guarded components also provide the component state protections of shared

components.

d. Concurrent components guarantee that each object of an exported abstract type may
only be accessed by one thread at a time. The component assumes responsibility for
ensuring mutual exclusion, regardless of the actions of the client tasks. This makes the
framework of mechanisms for ensuring mutual exclusion transparent to the user
(client). Note that concurrent components also provide the component state protec-

tions of shared components.

e. Multiple components have the same responsibility as concurrent components, ensur-
ing that objects of exported types and the component itself maintain consistent states

in the face of arbitrary, concurrent accesses. The difference is that multiple com-
ponents optimize accesses to a single object (or to the shared internal state of a com-
ponent) for maximal concurrency, for example, allowing multiple, simultaneous read
operations but only allowing exclusive write operations.

While these alternatives only define the broad boundaries of available concurrency pro-

tection models, they do illustrate the basic concepts from which more exotic approaches are often
built. As with different memory management models, the most important point is that simpler,
more well-known protection models are easier for the reuser to understand, and also easier for the
reuser to correctly apply.

When designing a new component that will include concurrency protection, the designer
should very carefully choose the protection model he will use. A knowledge of approaches com-
monly used in the past will help in choosing a model that will be more easily understood and

applied.

However, if possible, the concurrency protection model should not be directly visible in
the concept. In general, concurrency protection is a property of the implementation, not of the
abstraction itself. The primary reason for concurrency protection models that are visible in the

concept-guarded components, for example-is to allow the client an opportunity to optimize
the protection operations. The reuser has more knowledge about the intended use of a component,
and can therefore somewhat compensate for costly synchronizing steps. Unfortunately, exposing

the protection model through the component's specification makes it more difficult to change that
model. It also places responsibility for maintaining the model on the reuser's shoulders, instead
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of inside the component where it should be. Unnecessarily tying the concurrency protection
model to the abstract functionality of the component in this way reduces reusability and maintai-

nability.

There are certainly many cases where the limitations of Ada, or the requirements of a par-

ticular project, will require alternative protection schemes, however. As concurrency hardened

components become more common, and widely accepted concurrency protection models arise,

this grouping should be revised and expanded.

6.3 ITERATORS

The concept of "looping" or "iterating over" a group of items is fundamental to com-

puter science. However, one of the most difficult problems in designing a reusable component is

designing constructs to perform such operations. Reusable components that export abstract data

types often supply operations to iterate over the parts of an object of that type. Other components

that have visible state-for example, a component that embodies a parser, and that has a visible

state stack-may provide some form of iteration over that visible state. Unfortunately, construct-
ing general purpose iterators in strongly-encapsulated components is often very difficult in prac-

tice.

To give an example of how iterator construction "an be deceptively simple, consider an

iterator for the gpd type discussed throughout this paper. A single GPD node can be viewed as the

root of a tree (or directed graph) structure. An iterator would then "walk," or traverse, this tree,

calling some user-defined operation on each node along the way. For this example, consider an
iterator which provides an "inorder" traversal of the GPD structure rooted at a given node, assur-

ing that each node will only be visited once. Such an operation, described in Ada, might appear as

in Figure 29.

generic
with procedure userdefined-operation(n: in gpd-type);

procedure inordeftraversal(n : in gpd_type);

Figure 29. Declaration of a GPD Iterator

While this iterator is very simple, and using it is straightforward, it is very limited in

functionality. It allows the user to inspect the contents of the GPD structure in a predefined order,
without altering either the structure or the contents of the GPD nodes. It also requires that every

node in the structure be visited, but each can only be visited once.

If the iterator in Figure 29 is compared with the built-in facilities Ada provides for iterat-

ing over arrays, many of the limitations become clear. Using for, while, or loop statements in
Ada, a programmer can easily construct iterations that can visit the elements of an array in almost

any order, change the contents of any element in the array (without affecting the structure of the
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array itself), and terminate under almost any circumstance. Yet for a strongly encapsulated-e.g.,
limited private--type, the only facilities the user may have for iteration are those exported

through the component's specification.

There two main ways of addressing this problem. First, it is possible to define a com-
ponent so that exportation of an explicit iteration construct is unnecessary. Second, one can

attempt to export a comprehensive iteration construct to cover the required looping functionality.
Further, if the choice to provide an iterator is made, there are two possibilities: a passive iterator,
or an active iterator. Each of these approaches will be discussed in turn.

6.3.1 Eliminating the Need for an Explicit Iterator

To see how the need for an explicitly exported iterator can be eliminated, recall the con-
cept of primary and secondary operations introduced in section 5.2.2.3 [Weide86a]. Primary

operations are the "primitives" available for manipulating a given abstract data type. The set of
primary operations should be complete enough for the reuser to do everything needed to an object
of the abstract type. Secondary operations, by definition, can be constructed from the primary
operations and are thus not necessary in a component. In Ada, the most common iteration con-
structs programmers work with are built from the primary operations available on arrays and on

discrete types (array index types).

Iterators are actually secondary operations. If a component were to export a "complete"
set of primary operations, the programmer could easily build his own iterators from them. "Com-
plete," in this context, means primitives that are sufficient to access and change every subpart
within an object of an abstract type. In a sequence, the subparts would be the individual elements

of the sequence, while in a graph structure, the individual elements would be the nodes within the
graph.

This approach to iterator construction is not only simple, it results in elegant and easy to
use components. It greatly simplifies the programmer's task when constructing iterators, since the

programmer can use the looping features of the language without difficulty and to full effect.

However, some component designers wish to limit the set of primary operations in a con-
cept in order to allow more freedom in the implementation. For example a hash table may

describe a mapping from some input space (the tokens) to some output space (the table entries),
but the primary operations that are provided may not allow construction of an iterator. Consider
the concept shown in Figure 30, which defines a generalization of such a hash table-a unidirec-

tional associative memory.

18. Thts component is derived from the "Almosi Constant Map Facility" presented in -Weide86bj. It has been
converted to Ada and siighdy modified for ths example.
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generic
type DomainType is limited private; -- the domain of the associative map
with procedure Swap(left, right: in out DomainType);
with procedure Iniialize(d : in out Domain-Type);
with procedure Finalize(d : In out Domain Type);
with procedure Copy(from : in DomainType;

into : in out DomainType);
with function IsEqual(left, right: in DomainType) return boolean;

type Range-Type is limited private; -- the Ro.ge of the associative map
with procedure Swap(left. right: in out RangeType);
with procedure Iitialize(r: in out Range-Type);
with procedure Finalize(r : in out RangeType);
with procedure Copy(from : in RangeType;

into : in out RangeType);
with function IsEqual(left, right: in RangeType) return boolean;

package UnidirectionalAssociative MemoryConcept is

Type uAMjmap is limited private;
-- basic operations defined for every type
procedure Swap(lef, right: In out UAMjmap);
procedure Initialize(m : In out uAM_map);
procedure Finalize(m : in out UAMmap);
procedure Copy(from : in UAM_map;

into : in out UAM_Map);
function IsEqual(left. right: in UAMmap) return boolean;

-- prinary operations for UAMmaps
procedure get-default(m : in UAM map;

r : in out Range_Type);
-- The value of R when the call is made is finalized; then a copy
--of the default value of M is placed in R. M is not affected.

function is constant(m: in UAM map) return boolean;

-- Returns false if there exists a D in DomainType such that
-- M(D) /= GETDEFAULT(M).

function is not default(m : in UAM map;
d : in DomainType) return boolean;

Returns true iffM(D) /= GETDEFAULT(M) (i.e., ifD has been
entered into the map M).

procedure reset(m : in out UAM_map;
r : in out Range-Type);

-. finalizes all the old values in M, and resets it so that R is
the new default value for M. The original default value for

-- M is also finalized, and on exit R has been "conswned" and
.- contains the value of a newly initialized RangeType variable.

procedure access(m in out UAM_map;
d in Domain-Type;
r : in out Range-Type);

-. The map M is applied to the value D (D is used to "index" into
M). The resulting RangeType value is "swapped" with the value of

-- R. On exit, R contains the old value of M(D), and M(D) contains
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-- the old value of R.

end UnidirectionalAssociative_Memory-Concept;

Figure 30. Unidirectional Associative Memory Concept s

The operation access allows any entry to be examined or altered, and together with the
other operations allow any arbitrary associative mapping to be constructed. Unfortunately, there
is no given ordering enforced on the input domain D, and no way to find out which values in the

domain have been given special values (i.e., which tokens have been entered into the table) short
of calling is not default for every value in the domain. Also, notice that the domain D need not
even be finite. Because of these properties, there is no feasible way for the user of such a com-
ponent to iterate over the set of "interesting" entries.

As a result, the component author may wish to export some form of iterator construct in
order to supply this functior.ility. In fact, the component author must be able to perform this kind
of operation inside the component in order to call the appropriate finalize operations on all of the
tokens and values that have been inserted into the table, and also to implement the copy and

isequal operations for UAM maps. But how can this capability be presented to the user in an

effective way?

It is still possible to alter the interface of the Unidirectional Associative Memory com-
ponent so that enough primary operations are provided for the user to construct an iterator. In
[Weide86b], this component includes the additional primary operation shown in Figure 31. The
removeentry operation allows all entries in the associative memory to be visited in some imple-

mentation defined order, removing each entry from the memory map as it is visited. This capabil-
ity, which is destructive to the original map, allows arbitr,-y iterators to be constructed without
requiring data to be copied from the original memory map. While it is certainly less intuitive to

use than a for loop, or the iterator shown in Figure 29, it provides all necessary functionality.

6.3.2 Passive Iterators

Alternatively, the component designer may choose to export an iterator construct he feels

is easier to utilize. Booch classifies such constructs into passive and active 19 iterators [Booch87a,

pp. 157-161). In a passive iterator, only a single operation that encapsulates the operation of the
iterator is exported, as in Figure 29. An active iterator, on the other hand, has its internal method

of operation somewhat exposed through a collection of exported operations. The reuser can use

these operations, along with Ada's looping constructs, to build a code fragment that performs the
iteration of his choice.

19. In [Bishop9Oa]. these are referred to as iterators and generators, respectively.

73



procedure removeentry(m In out UAM_map;
d :in out Domain-Type;
r in out Range Type);

-- This function requires M to have at least one entry (i.e.,
-- IS_CONSTANT(M) =false), and raises UAM_ERROR otherwise.
-- This values ofD and R are finalized. If M is not constant, then
-- D is given the value of one value in the domain such that
-- M(D) 1= GETDEFAULT(M). R is given the value of M(D), then
-- M is altered so that M(D) now has the value GET DEFAULT(M) (i.e.,
-- the entry D, and the associated value R, are removed from M).

UAM-error: exception;

Figure 31. An Additional Primary Operation for the Unidirectional Associative Memory Concept

The difficulty of designing either form of iterator is constructing one that does not have

the drawbacks listed previously for the iterator in Figure 29. These drawbacks can be highlighted

by asking the following questions about a possible iterator design:

a. Can the user perform a destructive iteration, where the subparts of the object, but not
the structure of the object itself, are altered?

b. Can the user control the order of visitation?

c. Is the user forced to visit every subpart of the object, or can he qpecify when the itera-
tion should terminate?

d. Can the user visit some or all of the subparts more than once?

The problem of designing iterators for encapsulated types is discussed in more detail in

[Bishop90a].

Attempting to provide a functionally complete passive iterator often results in an

unwieldy, difficult to understand operation, as shown in Figure 32. In addition, the iterators
shown in Figure 32 do not provide a complete base for any iterator the user might desire. The

reuser's needs for iterating, the designer's need for hiding detail, and the difficulty of usage must

all be weighed when creating such an iterator. The biggest advantage of passive iterators is their

encapsulation-the reuser cannot affect the structure of the object during the iteration, he may

only alter its contents.

74



--An iterator for GPDtype.
generic

type UD-parameters is limited private;
-- A user-defined type used to pass parameters to the
-- user-defined operation. Successive invocations of the
-- user-defined operation can share information by saving
-- it in their PARMS as well.

with procedure user definedoperation(
node in out gpd-type;
parms In out UD_parameters;
continue out boolean

-- If FALSE is returned here, the iteration is prematurely
-- terminated without calling this operation for any of
-- the remaining nodes in the GPD structure ROOT).

procedure inorder traversa](
root :in out gpd type;

parms in out UD-parameters

-- An iterator for the Unidirectional Associative Memory Concept.
generic

type uDparameters Is limited private;
-- A user-defined type used to pass parameters to the
-- user-defined operation. Successive invocations of the
-- user-defined operation can share information by saving
-- it in their PARMS as well.

with procedure userdefined-operation(
d in Domain_Type;
r in out Range-Type;
parms in out upparameters;
removeit out boolean;

-- If this is true, the entry for D in M will be removed
when this procedure returns (and before it is called

-- again for the next entry in M).
continue : out boolean

-_ If FALSE is returned here, the iteration is prematurely
-_ terminated without calling this operation for any of
-- the remaining entries in M).

procedure iterateoverassociative-map(
m in out UAM_map;
parns in out UD-parameters

Figure 32. An Attempt at a Two Complete Passive Iterators

6.3.3 Active Iterators

Active iterators offer the potential of more complete functionality, at the expense of diffi-

culty of usage and understanding. Often, active iterators involve the creation of a distinct object
that contains the current state of the iteration (which object is being iterated over, which subpart of
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that object is next, etc.) [Booch87a, p. 157-1591. An example of a simple active iterator,
corresponding to the passive iterator of Figure 29, is shown in Figure 33.

type in_ordernraversal is limited private;
declarations of basic operations for this type omitted for

-- sinplicity
procedure initialize(i in out inorderptraversal;

over In gpdtype);
-- initializes Ifor an iteration over the GPD structure OVER, setting
-- the "current location" off to be the 'first" node in that
-- structure (as defined by the ordering imposed by IN ORDERTRAVERSAL).

procedure advance(i : In out inordertraversal);
-- Causes I to advance its "current location" to the "next"
-- node in the GPD structure I is iterating over (where "next"
-- is defined by the ordering imposed by INORDER TRAVERSAL). If
-- hascompleted(i) = true, or ifl is not initialized,
-- ITERATORERROR is raised.

procedure value.of(i n in order_traversal;
nextnode in out gpdtype);

-- Inspects I, and returns the node at the "current location"
-- of ! in NEXT NODE (NEXT NODE is finalized first, to erase
-- any previous value). If has completed(l) = true, or ifI
--has not been initialized, then ITERATORERROR is raised.

function hascompleted(i: in inordertraversal) return boolean;
-- returns true iff every node in the GPD structure has already
-- been visited by calling ADVANCE(I). Raises ITERATORERROR if
-- I has not been initialized.

procedure finalize(i : in out in.orderjraversal);
-- Terminates the iteration corresponding to I, freeing up
-- all resources it consumed.

iteratorerror : exception;

Figure 33. A Simple Active Iterator

A significant difficulty with active iterators, however, is that they open up the possibility
that the object being iterated over (the UAMmap, for example) may be structurally altered dur-

ing the execution of the iterator. "In the manner we have defined it, the iterator gives us great
flexibility in composing an iterator, but it is relatively unprotected. Hence, there is the potential

for clients to abuse this abstraction" [Booch87a, p. 159].

Fc:tunately, it is possible to add the necessary protection to an active iterator. For exam-

ple, Figure 34 shows an active iterator for the Unidirectional Associative Memory concept.

Notice that rather than create separate objects to hold the state of the iterator, this state is folded

into the object itself. This allows other operations to ensure that the object is not inside an itera-

tion before they change its structure.
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procedure startiteration(m : In out UAMmap);

-- places the map M into a state so that it can be iterated over
-- as if it were an array. A subsequent call to end iteration
-- will terminate the iteration over M. While M is being iterated
-- over, destructive routines (like Reset and Access) will cause
-- OPERATION NOT-ALLOWED to be raised. Nested "blocks" of
-- start iteration and end iteration calls are allowed.

function being-iteratedover(m : in UAM_map) return boolean;
-- returns true iff start iteration has been called on M (signifying
-- the beginning of an iteration), but no corresponding
-- end-iteration has been called (to signify the end of that
-- ueraor).

function size.of(m : In UAMmap) return integer;
-- returns the number of entries in M.

procedure access nthentry(m in out UAM.map;

N In integer;
d :n out Domain-Type;

r In out RangeType);
-- This procedure can only be called when being iteraedover(m) = true,
-- and it will raise OPERATIONNOTALLOWED otherwise. When M is being

iterated over, it can be considered to be an array from I to

-- SIZEOF(M) entries, each of which corresponds to a (Domain, Range)
-- pair.

-- When this routine is called, the current value of D isfinalized.

-- then, the Nth pair in M is accessed. The Domain value of this
-- pair is copied into D, and the Range value of this pair is "swapped"
-- with the current contents of R. This routine can later be called
-- to place this original Range value back into M.

-- AccessNthEntry can be called as many times a.; desired, and there
-- is no restriction on which elements of the conceptual array are

-- accessed, or in what order.

procedure enditeration(m: in out UAM_map);

-- stops the current iteration over M, allowing destructive operations
-- to be used once again. ITERATOR ERROR is raised if
-- BEING ITERATEDOVER(m) =false.

iterator_error : exception;
operation-not allowed :exception;

Figure 34. An Active, Random Access Iterator

Folding the iterator state into the object in this manner is not required for protection. It is

certainly possible to create separate objects for maintaining iterator state (as in Figure 33). It is

also possible to split the iterator state, placing some of it on the object being iterated over, and

placing the rest inside a separate object. The central point is that destructive operations must be
able to discern whether a given object is currently being iterated over, irrespective of the
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implementation method chosen for maintaining iterator state information.

Also, it is important for the active iterator implementation to support multiple iterations
over the same object (as shown in Figure 34). Otherwise, the reuser would not be able to nest
iterations within other iterations, a common algorithmic technique. This requirement raises addi-
tional concerns about where iterator state can be stored.

The iterator state (for all currently active iterations) must be preserved both during nested
iterations over the same object and, for components that support concurrency, during concurrent
iterations over the same object. Some active iterators do not require independent iterator state
information for each nested or concurrently active iteration. Others do require independent state
for each iteration, and explicit iterator state objects are the only way to ensure that calls to the
iteration routines (for example, value of or has completed in Figure 33) are matched with the
currect iterator state. The placement of iterator state information will be discussed again in Sec-
tion 6.3.4.

Figure 34 also shows another technique for designing effective active iterators. In this
example, the active iterator allows the reuser to treat the associative map being iterated over as if
it were an array20. Working inside a "block" of code delimited by calls to startiteration and

enditeration, the reuser can use a for loop, or any other looping construct, to create his own
iteration. As Booch noted, active iterators can certainly provide the reuser with a great deal of
power.

This form of active iterator could be termed a random access active iterator. It associates
the idea of an array index with the iterator, an integer in this case. The type used for the index
could certainly be turned into a generic parameter, but that was not done here for simplicity of the
example. Using such an index, the reuser can access any element of the map, in any order he
chooses, simply by manipulating the index he requests. Also, since Ada's for looping statement
is a natural means of applying the parts of an active, random access iterator, such iterators might

be termedfor loop iterators.

By allowing the reuser to view the UAM_map as an array in his mind, active, random
access iterators significantly increase understandability and usability. A similar active iterator
construct, a sequential access iterator, offers similar benefits.

Sequential access iterators are often used in while loops, rather than for loops. Thus,
they may also be referred to as while loop iterators. The iterator presented previously in Figure 33

is an example of an active, sequential access iterator.

20. Wheeler, David A. 1990. Institute for Defense Analyses, private communication.
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6.3.4 Recommendations on Iterator Construction

There are many possibilities when choosing an iterator mechanism for a reusable com-
ponent. It is possible to create components that do not need iterators, as shown in Section 6.3.1,
although this may force the reuser to employ a different strategy for building his iteration. Pas-
sive iterators can be provided, and are easy to define, although they may not meet all the reuser's
needs. Both sequential and random access iterators provide more flexibility, and each has its uses.
Random access iterators give immediate access to more functionality, but anything that can be
done with one form of active iterator can also be done with the other (although not necessarily as
efficiently). Unfortunately, random access iterators can be costly to implement for many data
structures. The basic advantages and disadvantages of each iterator method are shown in Table 1.

Iterator Techniques

Property Primary Passive Active, Active,
Operations Random Sequential

Access Access

Can randomly access elements No* No Yes No
during the iteration

Can access an element more than No No Yes Yes
once

Can control order of visitation No* No Yes No

Can terminate at any time Yes No* Yes Yes

Preserves object structure No Yes Yes Yes

Protects object from external No Yes Yes* Yes*
modification during iteration
Efficient for sequential structures Yes Yes No Yes

Does not need to know "size" ofobetfrtYes Yes No Yesobject first

Easy to map onto real world Yes Yes No Yes
sequential objects (e.g, files)

Easy to use No Yes Yes Yes

* Indicates that a property is typical for the given iterator technique, although alternative designs

are possible.

Table 1. A Comparison orIterator Techniques
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But is there a standard iterator form that can be used everywhere? 21 Ideally, a single form

for iteration would promote reuse in several ways. With only one form, both the difficulty of
understanding components and the difficulty of reusing components will go down. In addition, it
would be easy to create generic tools that embody complex operations that are actually imple-

mented as iterations. For example, the idea of a generic sorting operation is often conceived as a
routine that iterates over a generic sequence of some kind. Figure 35, derived from [Mendal86a]
and [Tracz89a], shows such an abstraction in Ada.

generic
type Element is limited private;

-- The basic operations on this type, exceplor Copy, are
-- omitted for simplicity.
with procedure Copy(source : In Element;

destination: in out Element);
with function "<"(left, right: in Element) return boolean is <>;
with function "="(eft, right: in Element) return boolean is <>;

type Index s limited private;
-- The basic operations on this type, except/or Copy, are
-- omitted for simplicity.
with procedure Copy(source : In Index;

destination: In out Index);
with function next index(i : In Index) return Index;
with function previous index(i : In Index) return Index;

type Sequence is limited private;
-- The basic operations on this type are omitted for simplicity.
with function firstjindex of(s : in Sequence) return Index;
with function lastjindex of(s : In Sequence) return Index;

with function GetElement(from : in Sequence;
at-location : in Index) return Element;

with procedure PutElement(E : in Element;

into : in out Sequence;
at-location: in Index);

package SortUtilities Is

end SortUtilities;

Figurt 35. A Generic Sort Routine, Which Assumes the Existence of a Standardized Active Iterator for

Sequences

In effect, the sort routine in Figure 35 assumes the existence of some standard iterator
form. Notice that this routine operates on an abstract type that can be treated as a sequence. It

sorts the elements present in this sequence, placing the elements in some user-defined order. In
order to be instantiated, however, the sort routine requires the operations first index.of and

21. Wheeler, David A. 1990. Institute for Defense Analyses, private communication.
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lastindex_of to exist for the abstract sequence, and also requires nextindex and previous_index

to exist for the type used as the abstract index.

Unfortunately, unless all "container" types-types that hold a group of elements that

can be iterated over-conform to these assumptions, the reuser will have to write these operations

in terms of the primitives that are provided by the container type.

In addition, a choice must be made about where to store the iterator state in order to

define a standard iterator form. It is clear that sequential iterators require explicit iterator state

objects if they are to ensure correct behavior for nested or concurrently active iterations. How-

ever, random access iterators often do not require explicit state objects to provide this protection,

and the reduced interface complexity eases the use of such iterators. But there is a further conflict.

If an iterator allows nested or concurrent iterations, the meaning of "destructive" itera-

tions becomes questionable. If one client is actively modifying the contents of a structure, it may

not be meaningful for another client to currently be iterating over that structure. If both clients are

actively modifying the contents without knowledge of each other, their actions could interfere to

produce incorrect results. This danger is present event if concurrency protections ensure the

object is always in a consistent state.

All of these concerns together create significant problems for defining a standard iterator.

There currently is no clear choice for the form of a standard iterator, although sequential access

iterators seem to have the most advantages of the alternatives presented here. The most ,kp!par

sequential access iterators include explicit state objects and do not support destructive iterations.

However, as a "straw man" proposal, the guidelines at the end of this section suggest standard

forms for active iterators.

Another question one might ask is whether an explicit iterator should be provided, even

for an abstract type that has a complete set of primary operations. As mentioned in Section

5.2.2.3, [Weide86a] recommends that the basic form of a component should only consist of its

primary operators. In other words, there shouldn't be an explicit iterator because one can be built

out of the available primitives. In fact, this user-built iterator would only suffer a constant factor

in speed degradation over one that was provided by the component.

Although the [Weide86a] guideline is useful, it may have a negative performance impact

in the long run. A lot of iterators end up being "tight loops" in programs. If a program spends

80% of its time in 20% of the code, and most of that 20% of the code is looping over something,

then that constant factor affecting non-primitive iterators may be wry important-that constant

factor may turn into a constant factor in the execution time of the program. If that constant is big

enough, it may be worthwhile to build the iterators into the concept. This reasoning is particu-

larly true of iterative operations like copy and is-equal that may be frequently used.
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Of course, the ideal solution is to provide only primary operations in the basic com-

ponent, but also provide extended or enhanced versions that export the extra functionality. This

way, users concerned with efficiency are not forced to pay unneeded penalties, while other users

do not have to accept unneeded functionality. Because this places a greater burden on the designer

to create multiple related components, though, this choice is left up to the designer.

As a result of this discussion on providing iterator capabilities for abstract data types, the

following guidelines are offered:

Guideline 18:

If possible, reusable components that export abstract data types should export a

complete set of primary operations, so that the reuser can construct arbitrary iterations

using these primary operations and the language mechanisms available for that purpose.

Guideline 19:

If a component designer chooses to export an explicit iterator, active, sequential

access iterators are preferred over passive iterators. Such an iterator should protect

objects of the abstract data type from structural modification while it is being iterated

over. In addition, such an iterator should support destructive capabilities, and should also
use explicit iterator state objects to ensure correct behavior under nested or concurrent

iterations. The following profile is recommended:

type iterator_state is limited private;

procedure start iteration(object in out AlDr;

state in out iteratorstate);

function being-iterated over(object: in ADT) return boolean;

procedure accesscurrent-entry(obiect In out ADT;

state in out iteratorstate;

element In out elementtype);

-- "Swaps" the current value of ELEMENT with the value of the

-- subpart of OBJECT located at the current position in the iteration STATE.

procedure advance(object : h. out AIYr;

state in out iterator state);

function iteration iscomplete(object In out ADr;

state in out iteratorstate) return boolean;
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procedure enditeration(object In out ADT;

state in out iterator state);

ieratorerror : exception;

operation-not allowed : exception;

Figure 36. Suggested Standard Profile for an Active, Sequential Iterator

Guideline 20:

If a component designer chooses to export an active, random access iterator, it

should be provided in addition to, rather than in lieu of, an active, sequential access itera-

tot. This will facilitate the development of tools that encapsulate iterative processes and
that expect a common set of operations for performing such iterations. When a random
access iterator is included, it should use explicit iterator state objects, support destructive

iterations, and ensure correct behavior under both nested and concurrent iterations. The

following profile is recommended:

type iterator_state is limited private;

procedure start_iteration(object : in out ADT;

state : in out iterator.state);

function being.iteratedover(object: In ADT) return boolean;

function sizeof(object : In ADT) return integer;

procedure access nth entry(object : In out ADT;

state : in out iteratorstate;

position : in integer;

element : In out element_type);

-- "Swaps" the current value of ELEMENT with the value of the

subpart of OBJECT located at POSITION, POSUTON can be in the

-- range I .. SIZEOF(M).

procedure enditeration(object : in out AT;

state: in out ierator_state);

iterator_error : exception;

operation not allowed : exception;

Figure 37. Suggested Standard Profile for an Active, Random Access Iterator
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Note that guidelines 19 and 20 only provide suggestions for standard iterator profiles.

Also notice that the "access" operations in both profiles do not imply that data is copied out of

the structure during an iteration; instead data is swapped out. This is in contrast to the value of

routine in Figure 33, which forces data to be duplicated. Also, the names of the operations in

these two suggested profiles are not important. It is the functionality of the operations, number of

arguments, and placement of arguments that is important for composability.

6.4 SAVE/RESTORE BEHAVIOR

One of the more obscure, but also often difficult, problems occasionally encountered by

reusable component designers has to do with save and restore operations. It is occasionally useful

for a component to export these operations for a given exported abstract type.

Some abstract types hold information that the reuser might naturally need to preserve

from one invocation of a program to another. For example, a programmer creating a rapid proto-

type of a new compiler might choose the GPD structure introduced in Section 3 to contain a

representation of an abstract syntax tree. If the compiler also supported a significant library

management system outside of the compiler (like Ada compilers do), the programmer might wish

to store this abstract syntax tree as an intermediate representation of compiled source code in his

library. DIANA, an intermediate representation for compiled Ada programs, is used in much the

same v, ay.

A componeat designer, anticipating these needs, might wish to provide the capability of

moving abstract objects to secondary storage in his component. Choosing a strategy for providing

this functionality raises some of the same basic alternative solutions as choosing a memory

management (Section 6.1) or concurrency protection (Section 6.2) strategy. In particular, the

designer can

a. exclude this capability ( as in unmanaged memory management or sequential con-

currency control),

b. require the user to explicitly participate in providing the capability ( as in explicitly

managed memory management, or shared or gua" Aed concurrency control),

c. or implement the capability in a completely transparent fashion ( as in transparently

managed memory management, or concurrent or multiple concurrency control).

This results in 3 main possibilities for the storage model supported by a component for a particu-

lar abstract type:
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a. Transient abstract data types have no predefined facility for moving them to or from
secondary storage, although it might be possible to build these mechanisms from the

primitives provided for the type.

b. Storable types have explicitly exported operations that allow them to be copied to or
from secondary storage. These operations usually take the form of a save operation

and a restore operation.

c. Persistent types can be moved to or from secondary storage by the component,

although this movement is transparent to the reuser. Thus, objects of persistent types

appear to the reuser to continue to exist between program executions. Note that per-

sistent types can be further divided into:

(1) Explicitly persistent types allow both transient and persistent objects of
that type to exist. The user must specify in some manner which objects of

the type are persistent and which are transient. Furthermore, when a per-

sistent object is no longer needed, the user must explicitly state so (via

some kind of free operation).

(2) Implicitly persistent types are implemented so that all objects of the type

are considered to be persistent. The persistence mechanism used in the

component's implementation is responsible for determining when per-

sistent objects can no longer be accessed by programs, and then reclaiming

the resources used by such objects [Wileden88a].

The issue of constructing effective, reusable components that are persistent is currently open, and

will not be discussed here. However, interested readers should refer to [Wileden88a] for an intro-

duction to reusable components that provide this capability.

In this section, it is the storable components that are of interest. Notice that in fact, the

save and restore operations provided by such components are both just special forms of iterators.

As such, one may argue that they need not even be provided in a "complete" component, since

they can be constructed from primary operators. But because they may be extremely cumbersome

for the reuser to implement in terms of primitive operators (or even in terms of explicit iterator

constructs), they can be prime candidates for inclusion in an "extended" version of a component.

Unfortunately, they may cause unique problems that do not occur in the majority of iterators.

To see how these problems manifest themselves, consider adding store and retrieve

operations to the GPD concept introduced in Section 3 and modified throughout Section 5. The

first attempt at such an addition might appear as shown previously in Figures 23 (p. 61) and 25 (p.

62) of Section 5.2.3.
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Unfortunately, this interface will not work, in general, for structurally shared objects.

Consider a GPD structure, as extended in Section 5.2.3, that may contain references to data the

may be structurally shared. For example, there may be a user-defined GPD node type that contains

references to separate linked list structures. Figure 38 illustrates an example structure of this type.

Notice that nodel and node_3 both point into the same shared structure.

Simple GPD Structure
Structure

A cycle is present in the
GPD structure. - Let tes present

A tained on the list

nodes.

GPD nodes may con-
tain references to list

nodes.

Figure 38. A GPD Structure That Refers to Structurally Shared Data

A standard implementation of the save operation for GPD structures would probably look

similar to the Ada-like pseudocode presented in Figure 39. Unfortunately, when combined with a

typical read operation, it would produce incorrect results. A save operation on the structure

shown in Figure 38, followed by a read operation to restore that data would result in Figure 40.

Although the structural sharing within the GPD itself was faithfully reproduced, information about

structural sharing in either the CommonNodeContents or any other user-defined data type stored

in the GPD was lost. The reproduction in Figure 40 does not include the same structural sharing in

the lists contained within the GPD structure.

This is a result of the fact that the same routine is being used both to save a single, iso-

lated object, and to save a collection of objects related through structural sharing. In order to

resolve and reproduce the structural relationships between a group of objects with shared subparts,

a different approach is necessary. The information used to recover structural sharing within a sin-

gle object may also be required during the storage of subsequent objects in order to recover inter-

object sharing.
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procedure save(file in textio.file type;
gpd in gpdtype);

begin
-- pass one
mark_.nodes(root); -- Symbolically label all the nodes that can be

-- reached from the root node. This includes setting
-- up the information required to store structurally
-- shared objects. If more than one GPD will be stored,
-- it should also be marked here.

-- pass two
for node n (gpd-structure) loop

-- Do this for every node that can be reached from the root,
-- probably via a depth-first recursive procedure rather than

-- an actual for loop. If more than one GPD structure
-- is being stored, this loop should iterate over all of them
If not_visited(node) then -- detect cycles

-- First, write out the node's structure, including all
-- information common to all classes of nodes
writebasicnode-state(file, node);
-- Now write out the Common_NodeContents of the node via
-- the write procedure passed in by the user during instantiation
write(node.contents);
case nodeclass.of(node) is

when user_defined =>
-- Invoke the table-driven execution mechanism to
-- call the write operation provided by the user that
-- corresponds to the type of the data in this node.
-. This operation is represented by the following
-- call:
caUl(procedurename => write,

arguments => (file, node.user_contents),
for-type => node.usertype);

when others =>
-- Write out information specific to this
-- node class (ommitted for simplicity).

end case;
end If;

end loop;
-- pass three
unmark_nodes(root); .- Clean up any information left around to

-- maintain the map from nodes to their symbolic names.
-- This step should be repeated for each GPD
-- structure that is being stored, just as during
-- the first pass.

-- Any other cleanup steps go here.
end save;

Figure 39. High-Level Pseudocode for the Save Operation

To implement this form of saving, it is necessary to iterate o. . all the objects to be

saved, keeping any temporary information about inter-object structural sharing available during
the whole iteration. Perhaps the most readily apparent approach is to create a thTre psr n1

rithm, as shown in Figure 39. Further thought can produce an equivalent two pass version, where
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Simple GPD Structure

The cycle is correctly

restored.

Structural sharing ist
not preserved.

Figure 40. Erroneously Reproduced Data Structure

the "marking" is rolled into the actions performed the first time a node is visited. Also, the final

pass for "unmarking" can be optimized so that a visit to each node need not take place.

Unfortunately, although three passes in Figure 39 are actually made to store the GPD

structure, actions are only performed on the user-defined subparts during the second phase.

Another important concern is whether or not the abstraction supplied as a user-defined subpart, a

list in this example, actually supports storage of groups of structurally interconnected objects in

addition to single objects. While assumptions about the generic types used to tailor a reusable

component often make that component's implementation easier, they can also implicitly reduce

reusability. In this case, the assumption that those generic parameters can be stored in a single

pass is implicit in the description of those parameters, and in the implementation of the GPD save

and restore routines. Furthermore, this assumption restricts the abstractions the reuser can supply

for these generic type parameters in order to instantiate his GPD component, and thus reduces the

reusability of the unit.

Solving this problem once it is recognized appears to be relatively easy. It is simple to

allk-.';a1e We assumption that objects are stored in isolation, which is present in the generic param-

eters. One possible sohitinn is chnw- in Figure 41, -:.hic denictq the changcz, to the geneiic

parameters of the GPD_pkg necessary to support storage of structurally shared
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CommonNodeContents. This solution implements a two pass interface, with the final

"unmarking" pass hidden inside the linish writinggroup operation.

generic
type Common_.NodeContents Is limited private;

-. basic operations omitted for simplicity

with procedure prepareto._readgroup(
file: in textio.ile_type);
-- This routine is called before a group of objects of type

.. Common NodeContents will be read from the specified FILE.

-- This opportunity can be used to load any information that was

-- previously stored about the group as a whole.

with procedure readone of_agroup(
file : in textio.file_type;
data : in out CommonNodeContents);
-- The DATA parameter of READ is mode In out because READ

-- FINALIZEs the incoming value of DATA before placing the

-- result of the READ operation in it.

with procedure finish-reading._of.group;
-- This routine is called once the reading of a group of objects

-- of type CommonNode Contents has been completed. This allows

any internal state used by the component defining the

-- type CommonNode Contents during the "reconstruction" operations

-- to be cleaned up.

with procedure repare_to.markgroup;
-- This routine is called before a group of objects of type
-- Common Node Contents will be written to a file. It allows any

-- internal state within the Common NodeContents component that will

-- be used for representing structural sharing wo be initialized.

with procedure markjfor writing(
data: In CommonNode-Contents);

This is called during the first pass of the saving operation

-- to indicate that this data element will be written to a fide.

with procedure marking-completedprepare towritegroup(
file : In text io.file-type);
-. This routine is called after all elements of the group have

-. been marked, but before the group has been written to the file.

-- It allows the component defining Common NodeContents to write

-- out any internal state information about the group as a whole

-. that will be useful in reconstructing all the pieces.

with procedure write..markedelement(
file : in text io.file_type
data : in CommonNodeContents);
-- In effect, this routine sends a "copy" of DATA to FILE.

with procedure finish_writing..group;
-- This routine is called once the writing of a group of objects

-- of type CommonNode_Contents has been completed. This allows

-. any internal state used by the component defining the

-- type Common NodeContents during the storage operations
-. to be cleaned up.

package oPoDpkf Ic
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Figure 41. Modifications to the Generic Parameters or GPDpkg to Support Two-Pass Saving

There are problems with standardizing on this approach, however. First, the choice of
how many passes to support to important. Second, the specification of the operations should

allow concurrency-hardened versions of the operations to be created. In other words, it should be
possible for two threads of control to be simultaneously storing two different objects to indepen-
dent locations, without interfering with each other.

Currently, there is little work available on the issues of general-purpose, composable
skeletons for "save" and "restore" operations. This section proposes a potential candidate,
although it is unproven. To address the first concern, the use of a single explicit pass is recom-
mended. As noted previously, the first "marking" pass can be rolled into the second pass. If a
"map" of unique object identifiers to symbolic identifiers is used as the marking scheme, the final
pass can be hidden in the "finish" operation 22. While sets of "save" and "restore" operations
that conform to this specification may be more difficult to write, they are feasible. Instead, it is
the reduced complexity of the interface that guides this recommendation.

To address the concern about concurrently executed "saves," the solution presented in

Section 6.3.4 will also be recommended here-the set of operations implementing "save" and
"restore" behavior for groups of objects should incorporate explicit iterator state objects. This
will ensure that the "marking" information appropriate for one invocation of an operation is not

confused with that of another concurrent invocation.

Figures 42 and 43 illustrate the changes necessary to the GPD.pkg to conform with these
recommendations. Note that similar modifications would have to be made to the

user defined node_pkg (Figure 25, p. 62) as well. Similar modifications would also be necessary
in the hypothetical list concept discussed as part of this example.

Guideline 21:

If possible, components that support save and restore behavior for the abstrac-
tions they provide should follow the example in Figure 43 for operations exported by the

component. Such components should also follow the example in Figure 42 for operations

on generic formal type parameters.

22. Wheeler, David A. 1990. Institute for Defense Analyses, private communication.
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generic
type CommonNodeContents is limited private;
-- basic operations omitted for simplicity

-- For saving and restoring a single object of type CommonNodeContents:
procedure save(file in text_io.file_type;

data in CommonNodeContents);
procedure restore(file In text-io.file-type;

data in out CommonNodeContents);

-- For saving and restoring a group of CommonNodeContents objects that might be
interconnected (in order to recover the interconnections):

type CNc_SaveState is limited private;

-. basic operations omitted for simplicity
type CNcRestoreState is limited private;
-- basic operations omitted for simplicity

with procedure prepare-tojread-group(

file In textjio.file-type;
readstate In out cNc.RestoreState);
-- This routine is called before a group of objects of type
-Common Node Contents will be read from the specified FILE.
.- This opportunity can be used to initialize the READSTATE,

and then load any information that was previously stored about
the group as a whole into the into that state variable.

with procedure read one of.a-group(

file n textio.file-type;
readstate in out CNcRestoreState;
data In out CommonNodeContents);
-- The DATA parameter of READ is mode n out because READ
-- FINALIZEs the incoming value of DATA before placing the
-- result of the READ operation in it.

with procedure finish_reading-of-group(

readstate : In out CNcRestoreState);
-- This routine is called once the reading of a group of objects

of type CommonNodeContents has been completed. This allows
-- the READESTATE to be cleaned up and finalized.

with procedure prepare-toawritegroup(

writestate : in out rNcSaveState);

-- This routine is called before a group of objects of type
-- Common Node Contents will be written to a file. It allows the
-- WRITE-STATE, used for representing structural sharing

information, to be initialized.
with procedure writemarked element(

file in textio.file-type
writestate in out CNCSaveState;

data in CommonNodeContents);

-- In effect, this routine sends a "copy" ofDATA to FILE.
with procedure finishwriting_group(

write-state : in out CNCSave State);

-- This routine is called once the writing of a group of objects
- of type CommonNodeContents has been completed. This allows
-- the WRITESTATE to be cleaned up andfinalized.
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packag,- 'PDpkg Is

Figure 42. Recommended Changes to the Generic Parameters of the GPD~pkg to Support Save and Restore

Behavior

package GPD-pkg Is

-For saving and restoring a single GPD structure:
gpd :In gpd-type);

procedure restore(file in text-io.filejtype;
gpd. in out gpd-type);

-For saving and restoring a group of GPD structures that might be
-interconnected (in order to recover the interconnections):

-Saving:

type G'D-save-state Is limited private;
-basic operations ornitted for simplicity

type GPDorestorestate is limited private;
-- basic operations omitted for simplicity 4
procedure pt ..pare-to _wrte-group(

save-state :In out GPD~save state);
procedure write_mnarked_elemnent(

file In textjio.filetype;
save-state In out GPDsave_state;
data in CommonNodeContents),

procedure fixish-writing-group(
save-state :In out GiPD-save_state);

-- Restoring:
procedure preparetojead-group(

file in text-io.file-type;
read-state in out GPD_save-state);

procedure read-one-of-a-group(
file in textjo.fiie type;
read-state in out GPD_save-state;
data in out gpd type);

procedure finish-reading-of..group(
read-state :in out GPD-save_state);

Figure 43. Recommended Changes to the Operations Exported by the GPDJpkg to Suppo~rt Save and Restore

Behavior
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7. CONCLUSIONS

Section 2 of this paper argues that reduced maintenance cost should be the dominant goal
of software reuse. While others have cited the potential for software development savings, the
potential for maintenance savings are far more dramatic. Sections 2.6 and 5.3 raise a significant
problem that has not yet been solved in any language. It is often said that the biggest reuse bene-

fits are observed when the largLt pieces are reused, yet the parameterization management prob-
lem these sections discuss may indicate that these benefits from large granularity reuse will not
materialize withou :he development of new techniques. This paper identifies and describes the
problem, without providing a solution. More research on this issue is needed.

Sections 4 through 6 discuss the use of Ada's features to represent reusable components,
providing guidelines to provoke the component author into considering how use of these features
will affect reusability. These guidelines are strongly based on the 3C model presented in Section
2. Although this model is still developing, it is very useful as a tool for thinking about the process

of reusing software, and the process of designing reusable components. It car hclp to shed light
on both the difficulties of these processes and ways to solve those difficulties. This paper captures
some of the current knowledge that has been revealed by this model about the construction of
software components in Ada, in the belief that this information will aid other software engineers
in constructing software that is more reusable.

In addition to these general issues, this paper also presents a collection of knowledge
about building reusable software components in Ada. This knowledge, gathered through experi-
ence, is valuable to the Ada component designer attempting to design for reuse. With or without
the 3C model, it provides a look at some of the problems that can arise when design decisions are
made implicitly, without considering their reuse ramifications.

Thus, the body of the paper serves to educate the prospective component designer about

these issues. In addition, the guidelines presented in the paper and summarized in Appendix B
can be used by designers as a check list for design decisions affecting reuse. Together with the

preliminary component labeling scheme presented in Appendix A, the guidelines will encourage

component designers to continually ask questions about how the decisions they make about a par-
ticular component will affect its reusability. It is this spirit of concern that will lead to more reus-

able software.
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APPENDIX A

ATTRIBUTES FOR LABELING THE INTERFACE CHARACTERISTICS OF

REUSABLE ADA COMPONENTS

This Appendix contains a list of "attributes" which can be used to characterize reusable
components, as well as different implementations of a single reusable component. This list is pri-
marily an extension of the "f',rms" used by Booch to differer.,iate the behavior of different
implementations of a single concept [Booch87a, pp. 40-43]. These attributes are designed to cap-
ture the information necessary to determine the applicability and ease-of-use of a reusable com-
ponent once it has been selected, not to define a taxonomy of components for the purpose of easy

component retrieval.

This list is also comprehensive enough to cover components which do not follow the
guidelines presented in this paper. In fact, if a component is given attribute values according to
this list, decisions about the design of its interface which diverge from the guidelines presented in
this paper,. ,ll be readily apparent.

This list is primarily suited toward categorizing componeats which define abstiact data
types (ADTs). Each implementation of an ADT-exporting component will have some value for
each attribute. The attributes are grouped into the following major and minor categories based on
the function of the information they provide:

a. Implementation Characteristics:

(1) Me.mory Management

(2) Concurrency Protection

b. Cha cristics of Generic Parameters to the Component:

,. CLass of the Generic Parameter

(2) Initialization/Finalization for the Generic Parameter

(3) Data Mov'ment for the Generic Parameter

(4) Implied Semantics of Exported Operations

(5) Imported Iterator
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(6) Save/Restore Operations

c. Characteristics of Exported Types and Operations:

Class of the Exported ADT

(1) Boundedness of the Exported ADT

(2) Initialization/Finalization for the Exported ADT

(3) Data Movement for the Exported ADT

(4) Exported Iterator

(5) Save/Restore Operations

Each category, along with its associated attributes, will be presented in turn, including the

set of possible values for each attribute.
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1. IMPLEMENTATION CHARACTERISTICS

a. Memory Management

(1) Is memory space reclamation handled by the component, or left up to the
language run-time system or operating system?

i) Unmanaged components provide no mechanism for space rec-
lamation, usually relying on the underlying run-time system to
provide automatic garbage collection.

ii) Managed components do provide a mechanism for space recla-
mation.

(2) Does the user actively participate in the memory management process?
(This question only applies to managed components.)

i) Explicitly managed components require the user to call some
form of "free" or "deallocate" routine in order to explicitly
reclaim space.

ii) Transparently managed components do not require any expli-
cit action on the user's part to "free" unneeded memory space.
Instead, they usually implement some local form of garbage
collection within the component. Such components often rely
on the user to consistently call the appropriate finalize opera-
tions on variables when they are leaving scope.

(3) Is the memory management portion of the component protected against use
by concurrently executing threads of control? (Again, this question only
applies to managed components.)

i) Controlled components are built so that exported free or final-
ize routines work correctly even if simultaneously executed by
multiple threads of control.

ii) Uncontrolled components require the corresponding free and
finalize routines to only be executed by one thread of control at
a time.

(4) Are there limits on the total amount of memory that can be used by the
component? (This question applies to both managed and unmanaged

components.)
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i) Limited components have an upper bound on how much
memory can be consumed by all of the active objects of the
exported abstract data type at one time. For example, a linked
list abstraction may allow the reuser to set an upper limit on the
total amount of memory that may be used by all of the lists that
are currently allocated.

ii) Unlimited components do not allow the reuser to place a bound

on their memory consumption.

(5) Concurrency Protection

i) Sequential components provide no concurrency protection
whatsoever.

ii) Shared components provide concurrency protection for the
internal state, both hidden and visible portions, of the package
(or instantiation) exporting the abstraction (for example, inter-
nal hash tables, caches, etc.). Shared components do not, how-
ever, provide any built in protection for objects of the exported
abstract type(s). Multiple threads of control can "share" the
facility, although they must provide some other protection
mechanism of their own to share objects from that facility.

iii) Guarded components ensure that each object of an exported
abstract type has some form of abstract "lock," but multiple
threads accessing a shared object must obey the associated
"locking" conventions. In other words, the necessary frame-
work for mutual exclusion at the object level is provided, but it
is up to the client tasks to assure that mutual exclusion is main-
tained by obeying the conventions of this framework. Note that
guarded components also provide the component state protec-
tions of shared components.

iv) Concurrent components guarantee that each object of an
exported abstract type may only be accessed by one thread at a
time. The component assumes responsibility for ensuring
mutual exclusion, regardless of the actions of the client tasks.
This makes the framework of mechanisms for ensuring mutual
exclusion transparent to the user (client). Note that concurrent
components also provide the component state protections of
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shared components.

v) Multiple components have the same responsibility as con-
current components, ensuring that objects of exported types
and the component itself maintain consistent states in the face
of arbitrary, concurrent accesses. The difference is that multi-
ple components optimize accesses to a single object (or to the
shared internal state of a component) for maximal concurrency,

for example, allowing multiple, simultaneous read operations
but only allowing exclusive write operations.
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2. CHARACTERISTICS OF GENERIC PARAMETERS TO THE
COMPONENT

These attributes will help a potential reuser to decide whether or not he can instantiate the
component correctly. For example, these attributes will help a potential reuser to determine
whether the operations exported by his Stack component will allow him to use it as a parameter to
your List component. For each abstract type in the context of the component, the following list of
attributes should be given.

a. Class of the Generic Parameter

(1) Standard parameters are generic formal type parameters that are specified
as generic type definitions [DoD83a, Section 12.12], rather than as a
private or limited private type declaration. Only matching Ada types can
be provided for such a parameter, so no opaque types can be provided for
this parameter by the reuser.

(2) as being private in the generic formal parameter list of the Ada specifica-
tion for the component. An Ada type which is limited private cannot be
provided as a value for this parameter when the component is instantiated.

(3) are declared as being limited private in the generic formal parameter list of
the Ada specification for the component. Any Ada type can be provided as
a value for this parameter when the component is instantiated.

b. Initialization/Finalization for the Generic Parameter

(1) None-this label indicates that no mechanisms other than the private/lim-
ited private nature of the generic formal declaration is used to support
encapsulation of this parameter to the reusable component.

(2) Initialization only indicates that a separate initialization routine is
imported along with the corresponding type parameter. No mechanism for
finalizing data items of this type is provided, however.

(3) Finalization only indicates that a separate finalization routine is imported
along with the corresponding type parameter. No mechanism for initializ-
ing data items of this type is provided, however.
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(4) Initialization/Finalization indicates that both initialization and finalization
procedural parameters are imported in addition to the type definition to sup-
port complete encapsulation of the corresponding type.

c. Data Movement for the Generic Parameter

(1) Standard indicates that the component relies on the standard Ada mechan-
isms for moving data of this user-defined type. If the corresponding type
parameter is limited private, no data movement for that types is performed
inside the component. If the corresponding type parameter is private, then
the predefined Ada assignment operator is used to copy objects of the
corresponding type inside the component.

(2) Copy indicates that the component relies on a user-defined copy procedure,
also passed into the component as a formal parameter along with the
corresponding type, to move data.

(3) Swap indicates that the component relies on a user-defined swap procedure,
also passed into the component as a formal parameter along with the
corresponding type, to move data.

d. Implied Semantics of Exported Operations

(I) Copy indicates that the component either exports a function that returns a
value of the corresponding type, or performs operations that imply the
duplication of objects of the corresponding type. If the component exports
operations with copy semantics, and the corresponding type parameter is
standard, the reuser should take this as a warning that the component may
behave differently, depending on whether or not the type he provides for
the corresponding parameter supports structural sharing.

(2) Swap indicates that the component does not export any operations that
imply or require the duplication of objects of the corresponding parameter
type.

e. Imported Iterator

(Note that passive iterators are generics, and therefore cannot be passed into
an Ada package as a generic parameter. Such constructs are not represented in this
categorization.)

(1) None indicates that the component does not need to iterate over the sub-
parts of any object of the corresponding parameter type.
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(2) Primary indicates that the component imports enough primary operations

along with the corresponding type parameter so that it can construct itera-

tors.

(3) Sequential access indicates that all of the operations that are part of an
active, sequential access iterator are imported as generic pai-ameters along

with the corresponding type parameter.

(4) Random access indicates that all of the operations that are part of an

active, random access iterator are imported as generic parameters along
with the corresponding type parameter.

f. Save/Restore Operations

(1) None indicates that no save/restore operations are imported for the

corresponding type parameter.

(2) One-pass indicates that appropriate formal subprogram parameters are

imported along with the corresponding type parameter to provide for a one-

pass set of save/restore operations for the corresponding type. The reuser
should be aware that he may not be able to supply a type that requires two
pass save/restore operations as the value of the corresponding type parame-

ter when instantiating this component.

(3) Two-pass indicates that appropriate formal subprogram parameters are

imported along with the corresponding type parameter to provide for a two-

pass set of save/restore operations for the corresponding type.
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3. CHARACTERISTICS OF EXPORTED TYPES AND OPERA-
TIONS

These attributes will help a potential reuser to decide whether or not he can instantiate the
component correctly. For example, these attributes will help a potential reuser to determine
whether the operations exported by his Stack component will allow him to use it as a parameter to
your List component. For each abstract type in the context of the component, the following list of
attributes should be given.

a. Class of the Exported ADT

(1) None indicates that the corresponding exported type is not declared as a
private Ada type in the package specification for the component. This
exported type is completely open. This classification for an exported type
is a warning sign that the type is not abstracted or encapsulated.

(2) Private indicates that the corresponding exported type is declared as a
private Ada type. The comparison and assignment operators for this type
provide correct semantics. This classification for an exported type is a
warning sign that the type is not sufficiently encapsulated.

(3) Aliased private indicates that the corresponding exported type is declared
as a private Ada type. The comparison or the assignment operator for this
type does not provide correct semantics. This classification for an exported
type is a warning sign that the type is not sufficiently abstracted or encapsu-
lated.

(4) Limited private indicates that the corresponding exported type is declared
as a limited private Ada type, and is strongly encapsulated.

b. Boundedness of the Exported ADT

(There are many different possibilities for the size behavior of ADTs. This
portion of the labeling scheme is merely a placeholder for future work in the effective
labeling of an attribute such as "boundedness.")

(1) Bounded indicates that the size of an object of the corresponding exported
type is static.
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(2) Unbounded indicates that the size of an object of the corresponding

exported type is dynamic.

c. Initialization/Finalization for the Exported ADT

(1) None None-this label indicates that no mechanisms for initialization or

finalization are explicitly exported from the component. Exported types
with this label should be designed so that neither initialization nor finaliza-

tion for objects of that type is necessary.

(2) Initialization only indicates that a separate initialization routine is

exported along with the corresponding type. No mechanism for finalizing

data items of this type is provided, however. All users of this type must

call this initialization operation on newly created objects of the correspond-

ing type to ensure correct behavior.

(3) Finalization only indicates that a separate finalization routine is imported

along with the corresponding type parameter. No mechanism for initializ-

ing data items of this type is provided, however. All users of this type must

call this finalization operation on objects of the corresponding type as they

leave scope to ensure correct behavior.

(4) Initialization/Finalization indicates that both initialization and finaliza-

tion operations for the corresponding type are exported by the component.

All users of the component must faithfully call these operations as objects

of the corresponding type are created or leave scope to ensure proper

behavior of the component.

Data d. ADT

(1) Standard types have no data movement mechanism explicitly provided by

the component. If the type is private, the reuser can use predefined assign-
ment for moving objects of the type. If the type is limited private, the

reuser cannot move objects of the type.

(2) Copy indicates that an explicit copy operation (assignment) is provided for
the type by the component.

(3) Swap indicates that a swap operation is provided for type by the com-

ponent for moving objects of the type.

e. Exported Iterator
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(If more than one form of iterator is provided for the type, label with all appli-
cable labels.)

(1) Noniterator types have no iteration capability whatsoever.

(2) Primary types have no explicit iterator construct, but an iteration can be
constructed from the primary operations available on the type.

(3) Passive types have an explicitly declared passive iterator that is exported

by the component.

(4) Sequential access types have an explicitly declared, active, sequential

access iterator that is exported by the component.

(5) Random access types have an explicitly declared, active, random access
iterator that is exported by the component.

f. Save/Restore Operations

(1) None indicates that no operations are exported for saving or restoring

objects of the corresponding type to or from secondary storage.

(2) One-pass indicates that objects of the corresponding type can be saved in a

one-pass operation, and that the type does not allow explicit structural shar-
ing. The component exports appropriate subprograms for saving or restor-

ing single objects of the corresponding type.

(3) Two-Pass indicates that objects of the corresponding type require two

passes to save, and that groups of such objects may have structural sharing
relationships. As a result, the component exports two sets of save/restore
operations. In addition to single-object save/restore operations, the com-
ponent also exports the appropriate subprograms to provide a two-pass,
multiple object set of save/restore operations. This second set of operations
will allow groups of interconnected objects to be saved and restored while

maintaining those interconnections.
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4. USING THE ATTRIBUTE VALUES

The ramifications of each attribute are often interconnected, so that attributes must be
viewed in combination to determine the suitability of an implementation for any given applica-

tion. Some common concerns and the attributes which affect them are:

a. Concurrent usage:

(1) Concurrency Protection

(2) Memory Management

b. Efficiency for large data types:

(1) Class of Generic Parameters

(2) Data Movement for Generic Parameters

(3) Implied Semantic.. if Exported Operations

c. Encapsulation of parameters (i.e., what are the limits on the abstract types that are pro-
vided as parameters to this component during instantiation?):

(1) Class of Generic Parameters

(2) Initialization/Finalization for Generic Parameters

(3) D-ta Movement for Ceneric Parameters

To see how these attributes can be applied to a real component, consider the GPD concept

discussed throughout the paper. The final form of this unit is presented in Appendix C. This

comiponent has one primaiy type parameter, CommonNodeContents, and one exported abstract

tNT)c, gpdtpe .Applyingthelabels discussed the following information:

a. Implementation Characteristics:

(1) Memory Management: Explicitly Managed, controlled, unlimited.

(2) Concurrency Protection: Shared.

b. Characteristics of Generic Parameter-CommonNodeContents:
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(1) Class: Limited private.

(2) Initialization/Finalization: Initialization/Finalization.

(3) Data Movement: Swap.

(4) Implied Semantics of Exported Operations: Swap.

(5) Imported Iterator: None.

(6) Save/Restore Operations: Two-pass.

c. Characteristics of Exported Types and Operations-gpd type:
Class: Limited private.

(1) Boundedness: Unbounded.

(2) Initialization/Finalization: Initialization/Finalization.

(3) Data Movement: Swap.

(4) Exported Iterator: Nonc.

(5) Save/Restore Operations: Two-pass.

Also, it might be useful to consider the labeling that would result from following all of
the guidelines presented in this paper. This would generate the following:

a. Implementation Characteristics:

(1) Memory Management:

Components that do not export dynamic types should be
unmanaged. Components that export dynamic types should ideally be
explicitly managed and controlled. Components be either limited or
unlimited, at the designer's discretion.

(2) Concurrency Protection:

Components that are not designed for concurrent applications may
be either sequential or shared. Components that are designed for such
applications may be either concurrent or multiple. Guarded components

should be avoided, if possible.

b. Characteristics of Generic Parameters to the Component:

110



(1) Class of the Generic Parameter:

Limited private is the best choice for type in the context of a com-
ponent, and other types should be avoided.

(2) Initialization/Finalization for the Generic Parameter:

Initialization/Finalization is needed for general support of com-
pletely encapsulated types.

(3) Data Movement for the Generic Parameter:

Swap is preferred, since it does not suffer from the efficiency
problems that copy can impose on large data types.

(4) Implied Semantics of Exported Operations:

Swap is preferred here as well, again because of efficiency con-

cerns.

(5) Imported Iterator:

Components that do not require iteration capabilities can be
labeled as None. Components that do require these capabilities should be
sequential access, if possible.

(6) Save/Restore Operations:

Components that do not require save/restore capabilities can be
labeled as None. This should include all components that only supply
basic functionality. However, extended components that support
save/restore behavior and thus require these capabilities should be two-
pass for maximum generality.

c. Characteristics of Exported Types and Operations:

Class of the Exported ADT:

Limited private is the best choice for exported types, and other

forms should be avoided.

(1) Boundedness of the Exported ADT:

Any label is acceptable.

(2) Initialization/Finalization for the Exported ADT:
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Again, Initialization/Finalization is needed for general support of

completely encapsulated types.

(3) Data Movement for the Exported ADT:

Again, swap is preferred, since it does not suffer from the effi-

ciency problems that copy can impose on large data types.

(4) Exported Iterator:

If possible, primary is preferable. If the designer desires an expli-

cit iterator, sequential access is the best choice.

(5) Save/Restore Operations:

None, on basic components if an appropriate iterator can be built

to perform the task from the primary operations. Extended components

that support more capabilities over the primary operations may include

save and restore operations, however. Such components should meet the
criteria for two-pass labeling.
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APPENDIX B

SUMMARY OF GUIDELINES

This Appendix repeats the individual guidelines introduced in the main body of thib

paper. These guidelines are focused on "average case" reusable components. Components

designed specifically for a real-time, embedded, or otherwise restricted application may require

different choices. To assist review, the page number where each guideline originally appeared is

presented along with that guideline in the summary. The reader working on application-specific

components should refer to the body of Lhe paper and consider the tradeoffs discussed there in

order to decide whether a given guideline is applicable to a particular application-specific com-

ponent.

Guideline ],page 37:

A concept should be represented as a single, generic package specification. All

reusable components should be represented to the user in this way if possible. Even large

subsystems should have a single point of visibility. Use subpackages within the abstrac-

tion to organize sets of related operations, if necessary, but maintain the "single top-level

generic per component" mapping, even for components that are actually implemented

using several packages. The user should be able to easily grasp the purpose/function of

the abstraction, although it may take much more time to understand exactly how to fully

utilize the supplied operations.

Guideline 2, page 37:

Each concept should provide one and only one abstraction-i.e., define a single

object type. This will help to increase the understandability of the component, and also

aid in separating pieces that may be independently reusable from one another.

Guideline 3, page 39:

There should be no fixed, horizontal coupling between a concept and other con-

cepts. In other words, Ada packages that represent reusable component concepts should
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not with other packages. Instead, all definitions required to describe the concept should

be passed in through generic parameters.

Guideline 4, page 47:

Each abstraction should be robust, meaning that it should provide a complete set

of basic operations. The client can only access instances of an abstract type using the

operations exported by the component's concept. Therefore, the operations provided

should be sufficient for the reuser to construct any complex manipulations that are neede,

from them.

Guideline 5, page 47:

For the abstract types defined in a component, use limited private.

Guideline 6, page 47:

Always provide initialize and finalize operators for abstract types.

Guideline 7, page 47:

When writing a new component that uses other components, always faithfully

apply the initialize and finalize operators. This guideline also applies to component

reusers in general.

Guideline 8, page 48:

All abstract types in the context (i.e., which are generic parameters in the package

specification) should be limited private. Similarly, initialize and finalize operations for
such a type should also be part of the generic formal parameter list. These operations

should be consistently applied within the component's body.

Guideline 9, page 48:

As a test of the robustness of both the generic parameters and the exported opera-

tions of a component that defines an abstract data type, consider "composing" the com-

ponent with itself. For example, you should be able to create a "stack or stacks" simply

by taking the exported type and operations from one stack instantiation and using them to
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instantiate the same generic again. There is not a general requirement for this capability,
but it is nevertheless a useful way of testing the robustness of both the generic parameters

and the exported operations.

Guideline 10, page 48:

To promote this composability and a uniform view of abstract types, all types
should match the following minimum profile:

type Item Is limited private;

procedure Swap(left, right: in out Item):

procedure Initialize(i : in out Item);

procedure Finalize(i : in out Item);

procedure Copy(from : inteni;

into : in out Item);
function IsEqual(left. right: in Item) return boolean;

Figure 21. Minimum Operations for Generic Formal Type Parameters

Note that the duplication operation is called copy instead of assign to highlight
the fact that it may be costly, rather than the fact that it can be used to move data. The
names actually given to these operations is of secondary importance, however. It is the
functionality provided by these operations, as well as the number and placement of argu-
ments, that is important for composability.

Although copy and isequal are not primitive operations, they are included
because in the cases where they are needed, the extra cost of constructing them from the

primitives without access to the underlying representation is often prohibitive, as dis-
cussed in Section 6.3. Need for the swap operator will be discussed in Section 5.2.2.

Guideline 11, page 52:

Each implementation of a concept should exist as a separate Ada generic pack-

age. However, all the package specifications for these implementations should be identi-
cal except for the package name. Also, these specifications may have additional generic
parameters added that represent parameters to the corresponding implementation. These
implementation context parameters, of course, are not necessarily uniform across all of the

implementations. Thus, the Ada specifications may also differ in this respect.
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Guideline 12, page 52:

The Ada package specifications for multiple implementations of a single concept

should come from a common source, for example, using a preprocessor. The Ada pack-

age bodies for multiple implementations should share common code. Use lower-level

generics (see [Musser89a] for an example), or a preprocessor so that common code comes

from a single source.

Guideline 13, page 58:

Aliasing behavior (structural sharing) is the responsibility of the abstraction, not

the user! "Structural sharing" semantics are often useful, but all basic operations must

maintain the same semantics (in particular, finalize). Users should not be able to create

aliases in an uncontrolled way (say, through use of the built in assignment operation).

Instead, they may only call operations in the abstraction, which will then create aliases on

their behalf (i.e., the package/abstraction must always maintain control over structural

sharing).

Guideline 14, page 59:

Do not use the built in assignment operator as the basic data movement operator.

Do not replace it with a copy operation. Instead, use a swap operation.

Guideline 15, page 60:

Every component should define a swap operation on its abstraction.

Gu ide!ine 16, page 60:

All operations Booch would classify as "constructors" or "selectors" should be

designed using "swap" semantics, not "copy" semantics. The one name/one object

paradigm Booch uses is the correct approach, although assignment/copy is the wrong

underlying data movement primitive.

Guideline 17, page 60:

Provide copy and isequal operators for all abstractions. Although these are

really secondary operations, in the cases where they are needed, the additional costs of all
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the procedure calls involved in building one using primitive operations is unnecessary.

Guideline 18, page 88:

If possible, reusable components that export abstract data types should export a

complete set of primary operations, so that the reuser can construct arbitrary iterations

using these primary operations and the language mechanisms available for that purpose.

Guideline 19, page 88:

If a component designer chooses to export an explicit iterator, active, sequential

access iterators are preferred over passive iterators. Such an iterator should protect

objects of the abstract data type from structural modification while it is being iterated

over. In addition, such an iterator should support destructive capabilities, and should also

use explicit iterator state objects to ensure correct behavior under nested or concurrent

iterations. The following profile is recommended:

type iteratorstate is limited private;

procedure startiteration(object In out ADT;

state In out iteratorstae);

function beingjiterated over(object: in ADT) return boolean;

procedure accesscurrenLentry(object in out ADT;

state In out iterator._state;

element in out element-type);

-- "Swaps" the current value of ELEMENT with the value of the

.- subpart of OBJECT located at the current position in the iteration STATE.

procedure advance(object in out ADr;

state In out iterator._state);

function iteration-is-complete(object In out ADT;

state In out iterator state) return boolean;

procedure end iteration(object in out ADT;

state In out iterator state);

iterator_error: exception;

operation not allowed : exception;
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Figure 36. Suggested Standard Profile for an Active, Sequential Iterator

Guideline 20, page 89:

If a component designer chooses to export an active, random access iterator, it
should be provided in addition to, rather than in lieu of, an active, sequential access itera-
tor. This will facilitate the development of tools that encapsulate iterative processes and

that expect a common set of operations for performing such iterations. When a random
access iterator is included, it should use explicit iterator state objects, support destructive
iterations, and ensure correct behavior under both nested and concurrent iterations. The
following profile is recommended:

type iterator-state is limited private;

procedure start.iteration(object In out ADT;

state : In out iterator.state);

function being-iterated over(object: in ADT) return boolean;

function size of(object: in ADT) return integer;

procedure access_nth entry(object in out APT;

state : In out iteratorstate;

position in integer,

element : In out elementtype);

-- "Swaps" the current value of ELEMENT with the value of the

.. subpart of OBJECT located at POSfTION. POSITION can be in the

.- range I .. SIZE OF(M).

procedure end.iteration(object : in out ADT;

state : In out iterator.state);

iteratorerror: exception;

operationjnot allowed : exception;

Figure 37. Suggested Standard Profile for an Active, Random Access Iterator

Guideline 21, page 96:

If possible, components that support save and restore behavior for the abstrac-

tions they provide should follow the example in Figure 43 for operations exported by the
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component. Such components should also follow the example in Figure 42 for operations
on generic formal type parameters.
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APPENDIX C

SUMMARY OF ADA UNITS USED IN EXAMPLES

This Appendix presents complete versions of all the Ada packages introduced in this paper. Of

particular importance is the specification for the Ada Package GPD_pkg, representing the GPD
concept introduced in Section 3. For this package, first the original code is presented, followed by
progressively more generalized versions, each incorporating the changes discussed in later sec-
tions of the paper. Each version is presented with "change bars" in the right hand margin to indi-
cate where it differs from the version immediately preceding it in this Appendix. Other Ada units
are also presented here.
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1. "NAIVE" ADA SPECIFICATION FOR GPD CONCEPT (SECTION
3)

with text-io,
generic

type CommonNodeContents is private;
package GPD-pkg is

type node-class is (gp-empty,
gpdinteger,
gpdboolean,
gpd-parent,
gpd-sequence);

type gpd-type is private;
nuU__gpdnode : constant gpd-type;

-- The following 5 routines are common to all node classes.
-- They include functions to determine the class of a node,
-- deallocate a single node or a whole gpd structure, and
-- read or write the COMMONNODECONTENTS slot of any node.
-- These 5 routines are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions for a give node-class. Note that some functions
-- are overloaded (like NEWNODE, etc.) if the desired node-class
-- can be determined from the argument profile, but ambiguous cases
-- (like NEW NODE for generating a gpd sequence vs. a gpd empty)
-- are given distinct names so they do not have to be qualified
-- with subpackage names.

function node_classof(node : in gpd_type) return node-class;
procedure free(node : in out gpd-type);

-- FREE is equivalent to recursively FREE'ing each child of
-- a parent/sequence, then using FREESINGLENODE. Nodes are
-- marked so that 4ycles in the GPD are handled correctly.

procedure freesinglenode(node : in out gpd-type);
-- This routine frees the space occupied by a single node.

...................................................................

-- All gpd nodes contain an element of type COMMONNODE_CONTENTS.
-- These functions allow access to this component of every node.

function get_data(node : in gpdjtype) return common_node_contents;
procedure put-data(node in out gpd-type;

data in commonnodecontents);
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"Naive" GPD

-- This subpackage defines the functions available for GPD nodes
-- of class GPDEMPTY. A node of class GPDEMPTY has no
-- o:going nodes, and no slots other than one to hold
-- COMMONNODECONTENTS.

package empty-node-pkg is
function new_empty-node return gpd-type;

-- Returns a node of class GPDEMPTY, which can still
-- hold COMMONNODECONTENTS data.

end empty-node-pkg;

-- This subpackage defines the functions available for GPD nodes
-- of class GPD_I'N-EGER. Each operation will ensure that its arg
-- is of class GPDINTEGER, raising GPDERROR if otherwise.

package integer__node-pkg is
function newnode(data: in integer) return gpd-type;
function get-data(node : in gpdjtype) return integer,
procedure put.data(node in out gpd_type;

data in integer);
end integer__node-pkg;

-- This subpackage defines the functions , vailable for GPD nodes
-- of class GPDBOOLEAN. Each operation will ensure that its arg
-- is of class GPDBOOLEAN, raising GPDERROR if otherwise.

package booleannode-pkg is
function newnode(data: in boolean) return gpd-type;
function get_data(node : in gpd-type) return boolean;
procedure put-data(node in out gpd_type;

data in boolean);
end boolean-nodepkg;

-- This subpackage defines the functions available for GPD nodes
-- of class GPDPARENT. Each operation will ensure that its arg
-- is of class GPD_P 4RENT, raising GPDERROR if otherwise.

-- A node of class GPDPARENT has an ordered list of children.
-- From the user's point of view, this list is organized as an array. The
-- length of this list is determined by the parameter to
-- MAKEEMPTYPARENTNODE when the node was first created, and
-- this size cannot be changed for that parent node. The

123



"Naive" GPD

-- children (some of which may be NULLGPDNODEs, the constant
-- defined earlier in the package for use as a null value) may be accessed
-- in any order using their positions relative to the beginning of
-- the list (i.e., their array index). Indices run from I to
-- MAXCHILDREN.

package parent-node-pkg is
function make-empty-parent-node(

maxchildren: in positive := 2) return gpd_type;
function maxchildren(node : in gpd-type) return natural;
procedure put-child(childnode • in gpd-type;

parent-node • in out gpd_type;
position • in positive);

-- This routine assigns the specified CHILDNODE into
-- the specified position of the PARENTNODE's conceptual

array of outgoing links. This overwrites any previous value
-- there. Since objects of GPD_TYPE are represented as pointer

values, this introduces structural sharing.
function getschild(parentnode • in gpdjtype;

position • in positive) return gpdjype;
end parent-nodepkg;

...................................................................

-- This subpackage defines the functions available for GPD nodes
-- of class GPD SEQUENCE. Each operation will ensure that its arg
-- is of class GPDSEQUENCE, raising GPDERROR if otherwise.

-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by the
-- subroutines in this package.

package sequenceinodepkg is
subtype sequence-type is gpd.type;

-- This subtype is just used for clarity in the
-- declarations below to sho,- where a node of class
-- GPD SEQUENCE is expected. If a node of a different
-- class is used where this subtype appears, GPDERROR
-- will be raised.

function makesempty-sequencenode return gpd-type;
-- Return a new GPDSEQUENCE node with no outgoing links.

procedure append(seq : in out sequence-type;
newelement : in gpdtype);

procedure removehead(seq • in out sequence..type;
head • out gpd-type);

procedure prepend(seq • in out sequence-type;
,new-element "in gpd-type);
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procedure remove_tail(seq in out sequence-type;
tail out gpd-type);

procedure readandconsume(seq in out sequence-type;
element out gpd-type;
N . in positive := 1);

-- Removes the Nth element of the list of outgoing links,
-- placing its value in ELEMENT.

procedure read nth.element(seq in out sequence tyne;
element out gpd-type;
N in positive:= 1);

--places the value of the Nth element of the list of outgoing
-- links in ELEMENT without altering the list.

procedure consume(seq in out sequencetype;
N in positive := 1);

-- Removes the Nth element of the list, without calling
-- FREE on the contents. The reference stored in that
-- outgoing link is lost.

procedure consume n elements(seq in out sequence-type;
N in positive);

-- Removes the first N elements of the list, without calling
-- FREE on any of the contents. The references stored in those
-- outgoing links are lost.

function length(seq : in sequence-type) return natural;
-- returns the number of outgoing links

procedure reverse-sequence(seq: in out sequence-type);
-- reverses the order of the list of outgoing links

function copy(sequence : in sequence-type) return sequence-type;
--produces a new node of class GPDSEQUENCE with an
-- identical list of outgoing links

procedure concat(onto, from : in out sequence-type);
-- remove all outgoing links from ONTO, concatenating them
-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function isempty(seq: in sequencetype) return boolean;
-- are there any outgoing links from SEQ?

end sequence nodepkg;

...................................................................

-- Errors:
-- This package only defines one exception, GPD ERROR. This
-- exception is raised whenever a node-class-specific function
-- or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINTERROR is raised if NULLGPDNODE
-- is passed into a routine.
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gpd-error: exception;

private
type gpd b-Acck(class node -class gpd-empty;

top-size natural 0;
bottom-size natural 0);

type gp&..type is access gpd-block;
nullgpd-node :constant gpd-type null;

end GP-pkg;
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2. GPD CONCEPT SPECIFICATION, AS SUGGESTED IN SECTION
5.1

with textio;

generic
type CommonNode_Contents is limited private;
with procedure initialize(data: in out CommonNodeContents);
with procedure finalize(data • in out CommonNode_Contents);
with procedure assign(from in CommonNodeContents;

into in out CommonNode_Contents);
-- ASSIGN should FINALIZE INTO first, then copy the value
-- of FROM.

package GPD pkg is

type node-class is (gpd-empty,
gpd integer,
gpd_boolean,
gpd-parent,
gpd-sequence);

type gpd.type is limited private;
-- The basic operations for this type:

procedure initialize(node in out gpd-jype);
procedure finalize(node in out gpdtype;

recurse in boolean true;
finalize_cnc in boolean true);

-- If RECURSE is true, FINALIZE is called "recursively" (cycles
-- are detected and handled correctly) on all links going out
--from NODE first. If FINALIZECNC is true, the formal
-- parameter FINALIZE is called on the Common NodeContents of NODE.
-- Finally, storage for NODE is reclaimed, and NODL is given
-- the initial value, NULL GPDNODE. Finalize thus replaces
-- both the FREE and FREESINGLENODE procedures from the
-- earlier package.

procedure assign(from in gpdtype;
into in out gpd-type);

-- ASSIGN FINALIZEs INTO first, then creates an identical
-- copy of FROM (including recursively copying all nodes pointed
-- to by outgoing links--cycles are detected, and replicated
-- appropriately).
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null._gxplnode : constant gpdtype; -- the initial value for this type

...................................................................

-- The following 3 routines are common to all node classes.
-- They include functions to determine the class of a node and
-- read or write the Common NodeContents slot of any node.
-- These 3 routines are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions for a give node-class. Note that some functions
-- are overloaded (like "newnode", etc.) if the desired node-class
-- can be determined from the argument profile, but ambiguous cases
-- (like "new node"for generating a gpd sequence vs. a gpdempty)
-- are given distinct names so they do not have to be qualified
-- with subpackage names.

function node_classof(node in gpdjype) return node-Class;
procedure getdata(node in gpd-type;

data in out CommonNodeContents);
procedure put_data(node in out gpd-type;

data in CommonNodeContents);

-- This subpackage defines the functions available for GPD nodes
-- of class GPD EMPTY. A node of class GPDEMPTY has no
-- outgoing nodes, and no slots other than one to hold
-- COMMONNODECONTENTS.

package empty-node-pkg is
procedure new-empty.node(node: in out gpd-type);

-- Makes sure NODE is finalized, then replaces it
-- with a node of class "gpd empty", which can still
-- hold CommonNodeContents data.

end empty-node__pkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpdinteger." Each operation will ensure that its arg
-- is of class "gpdinteger," raising GPDERROR if otherwise.

package integernodepkg is
procedure new_node(data in integer,

node in out gpdtype);

function get-data(node : in gpdtype) return integer,
procedure put-data(node in out gpd-type;

data in integer);
end integernodepkg;

128



GPD from Section 5.1

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd boolean." Each operation will ensure that its arg
-- is of class "gpdboolean," raising GPDERROR if otherwise.

package booleannodepkg is
procedure newnode(data in boolean;

node in out gpd-type);
function getdata(node : in gpd.type) return boolean;
procedure put_data(node in out gpd-type;

data in boolean);
end boolean-node-pkg;

...................................................................

-- This subpackage defines the functions available for GPD nodes
-- of class GPDPARENT. Each operation will ensure that its arg
-- is of class GPDPARENT, raising GPD ERROR if otherwise.

-- A node of class GPDPARENT has an ordered list of children.
-- From the user's point of view, this list is organized as an array. The
-- length of this list is determined by the parameter to
-- MAKEEMPTYPARENT_NODE when the node was first created, and
-- this size cannot be changed for that parent node. The
-- children (some of which may be NULLGPDNODEs, the constant
- defined earlier in the package for use as a null value) may be accessed
-- in any order using their positions relative to the beginning of
-- the list (i.e., their array index). Indices run from I to
-- MAXCHILDREN.

package parent-nodepkg is
procedure makeempty-parent-node(n : in positive:= 2;

node: in out gpd-type);
function maxchildren(node: in gpd-type) return natural;
procedure put.child(child_node in gpdjtype;

parent_node in out gpdtype;
position in positive);

procedure get-child(parentnode in gpd-type;
position in positive;
child in out gpd-type);

end parent-node-pkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd sequence." Each operation will ensure that its arg
-- is of class "gpdsequence," raising GPDERROR if otherwise.
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-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by the
-- subroutines in this package.

package sequence__node-pkg is
subtype sequence-type is gpdtype;

-- This subtype is just used for clarity in the
-- declarations below to show where a node of class
-- "gpd sequence" is expected. If a node of a different
-- class is used where this subtype appears, GPDERROR
-- will be raised.

procedure make_.empty-sequence-node(node in out gpdtype); I
-- Return a new gpd sequence node with no outgoing links. I

procedure append(seq in out sequence-type;
newelement in gpdtype);

procedure removehead(seq in out sequence-type;
head out gpd_type);

procedure prepend(seq : in out sequencetype;
newelement : in gpd-type);

procedure remove tail(seq in out sequence_type;
tail out gpd ype);

procedure read_andconsume(seq in out sequence_type;
element out gpdjype;
N in positive:= 1);

-- Removes the Nth element of the list of outgoing links,
-- placing its value in ELEMENT.

procedure read_nth_element(seq in out sequence-type;
element out gpd-type;
N in positive:= 1);

-- places the value of the Nth element of the list of outgoing
-- links in ELEMENT without altering the list.

procedure consume(seq in out sequence-type;
N •in positive =1;
finalize in boolean true;
recurse in boolean true;
finalize_cnc in boolean true);

-- Removes the Nth element of the list. If FINALIZE is true,
-- the FINALIZE operation is invoked on the value of the
-- Nth element before it is removed. The parameters s-IRECURSE
-. and FINALIZECNC are passed to the FINALIZE operation
-- if it is invoked.

procedure consumen_elements(seq in out sequence-type;
N in positive;
finalize in boolean true; I
recurse in boolean true; I
finalize_cnc in boolean true); I
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Remove the first N elements of the list. See CONSUMEfor
-- an explanation of thefinal three arguments.

function length(seq : in sequencejype) return natural;
-- returns the number of outgoing links

procedure reverse-sequence(seq: in out sequence_type);
-- reverses the order of the list of outgoing links

procedure copy(original in sequencejtype;

duplicate : in out sequence-type);
-- produces a new node of class "gpd sequence" with an
-- identical list of outgoing links

procedure concat(onto, from: in out sequence-type);
-- remove all outgoing links from ONTO, concatenating them

-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function is.empty(seq: in sequence-type) return boolean;
-- are there any outgoing links from SEQ?

end sequence-nodepkg;

-- Errors:
-- This package only defines one exception, GPDERROR. This
-- exception is raised whenever a node-class-specific function
-- or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINTERROR is raised if NULLGPDNODE
-- is passed into a routine.

gpderror : exception;

private
type gpdblock(class : nodeclass := gpd-empty;

top-size natural := 0;
bottomsize : natural := 0);

type gpd-type is access gpd-block;
null~gld..node : constant gpd-type := null;

end GPD pkg;
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3. GPD CONCEPT SPECIFICATION, AS SUGGESTED IN SECTION
5.2.2

with text io, basic-type-support;
generic

type CommonNodeContents is limited private;
with procedure initialize(data: in out Common_NodeContents);
with procedure finalize(data" in out CommonNode_Contents);
with procedure swap(left in out CommonNodeContents;

right in out CommonNodeContents);
package GPDpkg is

-- For use in single-threaded applications where concurrency
-- protection for memory management is NOT necessary.

type node-class is (gpd-empty,
gpd integer,
gpd-boolean,
gpd-parent,
gpd-sequence);

-- The type NODECLASS is left unencapsulated for simplicity

type gpd.type is limited private;
-- The basic operations for this type:

procedure initialize(node : in out gpdtype);
-- ensures that NODE = NULLGPDNODE
-- (NULL_GPDNODE is the initial value for all elements of this
-- type).

procedure finalize(data: in out gpld_type);
-- If NODE is referenced from multiple locations, this reference
-- is set to NULL_GPD NODE. If this is the last remaining reference
-- to NODE, then storage for NODE is reclaimed, and NODE is given
-- the initial value, NULL GPD NODE.

procedure swap(left in out gpd_type;
right in out gpd-type);

-- exchanges the contents of left and right
procedure duplicate(original in gpd-type;

copy in out gpd_jype);
-- DUPLICATE FINALIZE COPY first, then creates an identical
-- copy of the ORIGINAL (including recursively copying all
-- nodes pointed to by outgoing links--cycles are detected,

133



GPO from Section 5.2.2

-- and replicated appropriately).

nuUgpdnode : constant gpdtype; -- the initial value for this type

-- The following 2 routines are common to all node classes.
-- They include functions to determine the class of a node and
-- to access the CommonNodeContents slot of any node.
-- These functions are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions and procedures for a give node-class. Note that some
-- routines are overloaded (like "newnode", etc.) if the
-- desired node-class can be deermined from the argument profile,
-- but ambiguous cases (like "newnode"for generating a
-- gpdsequence vs. a gpd empty) are given distinct names so
-- they do not have to be qualified with subpackage names.

function nodeclass of(node: in gpdtype) return node-class;

-- The FREE routines in the previous versions are replaced by
-- the FINALIZE routine above.

procedure access_contents(node in out gpd_type;
data in out CommonNodeContents);

-- Exchanges the value (via a call to the appropriate SWAP)
-- of DATA with the value of the CommonNodeContents slot of
-- NODE.

-- This subpackage defines the functions available for gpd nodes
-- of class "gpdempty." Each operation will ensure that its arg
-- is of class "gpd empty," raising GPDERROR if otherwise.

-- A node of class "gpd empty" has no outgoing nodes, and
-- no slots other than one to hold CommonNodeContents.

package empty-nodepkg is
procedure newempty_node(node : in out gpdtype);

-- Makes sure NODE is finalized, then replaces it
-- with a node of class "gpdempty", which can still
-- hold CommonNodeContents data.

end empty-.nodepkg;

-- The routines in the following 2 packages use the SWAP
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-- routines from the package BASICTYPESUPPORT to "access"
-- the internal contents of each node-class (gpd integer and
-- gpdboolean). This isn't strictly necessary for these
-- types (which may not be strongly encapsulated), but does
-- serve as an example of how strongly encapsulated types
-- would be treated.

-- In each case, an "access" routine replaces both the GETDATA
-- and PUTDATA routines found in other versions of this package.
-- If duplication of internal data were required by the user,
-- he could use the appropriate COPY or DUPLICATE routines
-- exported by BASIC TYPESUPPORT (or whatever package defined
-- the type under consideration).

...................................................................

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd integer." Each operation will ensure that its arg
-- is of class "gpd integer," raising GPDERROR if otherwise.

package integer_nodepkg is
procedure newnode(data in integer,

node in out gpdtype);
procedure access-data(node in out gpdjype;

data in out integer);
end integernodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd boolean." Each operation will ensure that its arg
-- is of class "gpd boolean," raising GPDERROR if otherwise.

package boolean-nodepkg is
procedure newnode(data : in boolean;

node : in out gpd type);
procedure access.data(node in out gpdtype;

data in out boolean);
end boolean-nodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd_parent." Each operation will ensure that its arg
-- is of class "gpd_parent," raising GPDERROR if otherwise.

-- A node of class "gpdparent" has an ordered list of children. The
-- length of this list is determined by the parameter to

Make_EmptyParentNode when the node was first created. The
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-- children (some of which may be NullGPDNodes) may be accessed
-- in any order by their relative positiions from the beginning of

the list.

package parent-node-pkg is
procedure make-empty-parentnode(

n in positive := 2;
node in out gpd-type);

function max children(node : in gpd-type) return natural;
-- This routine remains a function, and relies on the
-- COPY routine exported by BASICTYPESUPPORT. The user
-- can't "access" the number of children--it must be read-only
--from his point of view.

procedure access-child(
childnode in out gpd-type;
parent-node in out gpd-type;
position in positive);
-- Remember, this _replaces_ the value of the Nth
-- outgoi'ng link with the value of CHILDNODE, and
-- replaces the value of CHILDNODE with the value of
-- the Nth outgoing link (a "swap").

procedure put-child(
child-node in gpdtype;
parent-node in out gpd-type;
position in positive);
-- Rather than "swapping", this does what you would
-- expect: it "links" the Nth outgoing link of the
-- PARENTNODE

-- to the CHILDNODE. This is a "restricted"form of
-- aliasing, which is completely under the control of
-- this module (i.e., not visible or accessible to ,rhe
-- end user).

end parentjnodepkg;

...................................................................

-- This subpackage defines the functions available for gpd nodes
-- of class "gpdsequence." Each operation will ensure that its arg
-- is of class "gpd sequence," raising GPDERROR if otherwise.

-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by the
-- subroutines in this package.

package sequencenodepkg is
subtype sequence-type is gpd-type;

-- This subtype is just used for clarity in the
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-- declarations below to show where a node of class
-- "gpdsequence" is expected. If a node of a different
-- class is used where this subtype appears, GPDERROR
-- will be raised.

procedure make-emptysequencenode(node : in out gpd-type);
-- Create a new gpd sequence node with no outgoing links.

-- Rather than "swapping", these operations introduces structural
-- sharing semantics. They "link" the corresponding outgoing link

of the SEQUENCE NODE to the CHILDNODE given in the
-- argument (or remove such a link). This is a "restricted"form
-- of aliasing, which is completely under the control of this
-- module (i.e., not accessible to the end user).

procedure append(
seq in out sequence-type;
newelement in gpd-type);

adds a new outgoing link to the end of SEQ's
-- list of links, then places a reference to the NEWELEMENT
-- in this outgoing link.

procedure remove-head(
seq in out sequencejtype;
head in out gpdtype);
-- removes the first outgoing link on SEQ's list, and
-- returns the object pointed to by that link.

procedure prepend(
seq in out sequence-type;
newelement in gpd type);
-- like APPEND, but for the beginning of the list.

procedure remove-tail(
seq in out sequencetype;
tail out gpd_type);
-- like REMOVEHEAD, but for the end of the list.

procedure accessnthelement(
seq in out sequence-type;
element in out gpd-type;
N • in positive:= 1);
-- "Swaps" the node pointed to by the Nth outgoing link with
-- the current value of ELEMENT.

procedure consume(
seq in out sequence type;
N in positive:= 1);
-- Removes the Nth outgoing link from the list. FINALIZE is called
-- on the contents before the link is removed.

procedure consume_n_elements(
seq in out sequence-type;
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N in positive);
-- Removes the first N outgoing links from the list. FINALIZE is
-- called on the contents of each link before it is removed.

function length(seq : in sequencetype) return natural;
-- Returns the number of outgoing links.

procedure reverse.sequence(seq : in out sequence-type);
-- Reverses the order of the list of outgoing links.

procedure copy(
original in sequence-type;
duplicate in out sequencetype);
-- Produces a new node of class "gpd sequence" with an
-- identical list of outgoing links. Unlike the DUPLICATE
-- operation, however, both the ORIGINAL and the DUPLICATE conceptually I
-- share structural references to the same children (DUPLICATE
-- would create a new set of identical children).

procedure concat(
onto in out sequence-type;
from in out sequencetype);
-- Removes all outgoing links from ONTO, concatenating them
-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function is-empty(seq : in sequence-type) return boolean;
-- Are ther, any outgoing links from SEQ? I

end sequence node-pkg;

-- Errors:
-- This package only defines one exception, GPDERROR. This
-- exception is raised whenever a node-class-specific function
-- or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINTERROR is raise, d if NULLGPDNODE

-- is passed into a routine.

gpd-error exception;

private
type gpd-block(class nodeclass gpd-empty;

top-size natural 0;
bottomsize natural 0);

type gpd-type is access gpd-block;
nU__gpd_node : constant gpd-type null;

end GPD-pkg;
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4. GPD CONCEPT SPECIFICATION, AS SUGGESTED IN SECTION
5.2.3

with textjio, basicjtype-support;
generic

type CommonNodeContents is limited private;
with procedure initialize(data: in out CommonNode_Contents);
with procedure finalize(data: in out Common_NodeContents);
with procedure swapleft in out CommonNodeContents;

right in out CommonNodeContents);
with procedure re .1(file in textio.file-type;

data in out CommonNode_- Contents);
-- The DATA parameter of READ is mode in out because
-- READ FINALIZEs the incoming value of DATA
-- before placing the result of the READ operation in it.

with procedure write(file in textio.ffle-type;
data in CommonNodeContents);

-- In effect, WRITE sends a "copy" of DATA to FILE.
package GPDpkg is

-- For use in single-threaded applications where concurrency
-- protection for memory management is NOT necessary.

type node-class is (gpd_empty,
gpd-integer,
gpd-boolean,
gpd-parent,
gp-sequence,
gpd_userdefined);

-- The type NODECLASS is left unencapsulated for simplicity

type gpd-type is limited private;
-- The basic operations for this type:

procedure initialize(node : in out gpd-type);
-- ensures that NODE = NULLGPDNODE
-- (NULL_GPDNODE is the initial value for all elements of this
-- type).

procedure finalize(data: in out gpdtype);
-- If NODE is referenced from multiple locations, this reference
-- is set to NULLGPDNODE. If this is the last remaining reference
-- to NODE, then storage for NODE is reclaimed, and NODE is given
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-- the initial value, NULL GPD NODE.
procedure swap(left in out gpdjype;

right in out gpd_type);
-- exchanges the contents of left and right

procedure duplicate(original in gpdtype;
copy in out gpdtype);

-- DUPLICATE FINALIZE COPY first, then creates an identical
-- copy of the ORIGINAL (including recursively copying all
-- nodes pointed to by outgoing links--cycles are detected,
-- and replicated appropriately).

null_.gpd_node : constant gpd-type; -- the initial value for this type

-- The following 4 routines are common to all node classes.
-- They include functions to determine the class of a node,
-- to access the CommonNodeContents slot of any node, and to save
-- or restore a GPD node to or from a file.
-- These functions are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions and procedures for a give node-class. Note that some
-- routines are overloaded (like "newnode", etc.) if the
-- desired node-class can be determined from the argument profile,
-- but ambiguous cases (like "new node"for generating a
-- gpdsequence vs. a gpdempty) are given distinct names so
-- they do not have to be qualified with subpackage names.

function nodeclass of(node in gpd-type) return node_class;

-- The FREE routines in the previous versions are replaced by
-- the FINALIZE routine above.

procedure accesscontents(node in out gpdtype;
data in out Common_NodeContents);

-- Exchanges the value (via a call to the appropriate SWAP)
-- of DATA with the value of the CommonNodeContents slot of
-- NODE.

procedure save(file in textio.fle_type;
gpd in gpdtype);

-- In effect, a "copy" of GPD is placed on the FILE.

procedure restore(file in textio.file-type;
gpd in out gpdtype);

-- The GPD parameter of RESTORE is mode in out so that its prcvious
-- value can be finalized before the new structure is assigned to it.
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-- This subpackage defines the functions available for gpd nodes
-- of class "gpd empty." Each operation will ensure that its arg
-- is of class "gpd empty," raising GPDERROR if otherwise.

-- A node of class "gpdempty" has no outgoing nodes, and
-- no slots other than one to hold CommonNodeContents.

package emptynodepkg is
procedure new-emptynode(node : in out gpdtype);

-- Makes sure NODE is finalized, then replaces it
-- with a node of class "gpd empty", which can still
-- hold CommonNodeContents data.

end empty-node-pkg;

-- The routines in the following 2 packages use the SWAP
-- routines from the package BASICTYPESUPPORT to "access"
-- the internal contents of each node-class (gpd integer and
-- gpd boolean). This isn't strictly necessary for these
-- types (which may not be strongly encapsulated), but does
-- serve as an example of how strongly encapsulated types
-- would be treated.

-- In each case, an "access" routine replaces both the GETDATA
-- and PUT DATA routines found in other versions of this package.
-- If duplication of internal data were required by the user,
-- he could use the appropriate COPY or DUPLICATE routines
-- exported by BASICTYPESUPPORT (or whatever package defined
-- the type under consideration).

-- This subpackage defines the functions available for gpd nodes
-- of class "gpdinteger." Each operation will ensure that its arg
-- is of class "gpdinteger," raising GPDERROR if otherwise.

package integer nodepkg is
procedure new-node(data in integer,

node in out gpdjype);
procedure accessdata(node in out gpd.type;

data in out integer);
end integernode-pkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd boolean." Each operation will ensure that its arg
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-- is of class "gpdboolean," raising GPDERROR if otherwise.

package booleannodepkg is
procedure newnode(data in boolean;

node in out gpd_type);
procedure access_data(node in out gpdtype;

data in out boolean);
end boolean nodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd.parent." Each operation will ensure that its arg
-- is of class "gpd_parent," raising GPDERROR if otherwise.

-- A node of class "gpd_parent" has an ordered list of children. The
-- length of this list is determined by the parameter to
-- MakeEmptyParent Node when the node was first created. The
-- children (some of which may be NullGPDNodes) may be accessed
-- in any order by their relative positiions from the beginning of
-- the list.

package parent-node__pkg is
procedure make-empty-parent-node(

n in positive := 2;
node in out gpdjype);

function max-children(node in gpd_type) return natural;
-- This routine remains afunction, and relies on the
-- COPY routine exporte, ",BASICTYPESUPPORT. The user
-- can't "access" the nurmr of children--it must be read-only
--from his point of view.

procedure access_child(
child_node in out gpdtype;
parentnode in out gpdtype;
position in positive);
-- Remember, this _replaces_ the value of the Nth
-- outgoing link with the value of CHILDNODE, and
-- replaces the value of CHILD NODE with the value of
-- the Nth outgoing link (a "swap").

procedure put-child(
childnode in gpd-type;
parent-node in out gpd-type;
position in positive);
-- Rather than "swapping ", this does what you would
-- expect: it "links" the Nth outgoing link of the
-- PARENT NODE
-- to the CHILDNODE. This is a "restricted"form of
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-- aliasing, which is completely under the control of
-- this module (i.e., not visible or accessible to the
-- end user).

end parent-nodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd _sequence." Each operation will ensure that its arg
-- is of class " gpdsequence," raising GPDERROR if otherwise.

-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by she
-- subroutines in this package.

package sequence-node-pkg is
subtype sequence-type is gpdtype;

-- This subtype is just used for clarity in the
-- declarations below to show where a node of class
-- "gpd sequence" is expected. If a node of a different
-- class is used where this subtype appears, GPDERROR
-- will be raised.

procedure make-emptysequence__node(node : in out gpd_type);
-- Create a new gpdsequence node with no outgoing links.

-- Rather than "swapping", these operations introduces structural
-- sharing semantics. They "link" the corresponding outgoing link
-- of the SEQUENCENODE to the CHILDNODE given in the
-- argument (or remove such a link). This is a "restricted"form
-- of aliasing, which is completely under the control of this
-- module (i.e., not accessible to the end user).

procedure append(
seq in out sequencetype;
newelement in gpd-type);
-- adds a new outgoing link to the end of SEQ's
-- list of links, then places a reference to the NEWELEMENT
-- in this outgoing link.

procedure removehead(
seq in out sequence-type;
head in out gpdtype);
-- removes the first outgoing link on SEQ's list, and
-- returns the object pointed to by that link.

procedure prepend(
seq in out sequencetype;
new_element in gpdtype);
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-- like APPEND, but for the beginning of the list.
procedure remove_tail(

seq in out sequence-type;
tail out gpd-ype);
-- like REMOVEHEAD, but for the end of the list.

procedure access_nthelement(
seq in out sequencejtype;
element in out gpd.type;
N in positive:= 1);
-- "Swaps" the node pointed to by the Nth outgoing link with
-- the current value of ELEMENT.

procedure consume(
seq in out sequence-type;
N in positive:= 1);
-- Removes the Nth outgoing link from the list. FINALIZE is called
-- on the contents before the link is removed.

procedure consume_n-elements(
seq : in out sequence-type;
N : in positive);
-- Removes the first N outgoing links from the list. FINALIZE is
-- called on the contents of each link before it is removed.

function length(seq : in sequence._type) return natural;
-- Returns the number of outgoing links.

procedure reverse-sequence(seq : in out sequencejtype);
-- Reverses the order of the list of outgoing links.

procedure copy(
original in sequence-type;
duplicate in out sequencetype);
-- Produces a new node of class " gpdsequence" with an
-- identical list of outgoing links. Unlike the DUPLICATE
-- operation, however, both the ORIGINAL and the DUPLICATE conceptually
-- share structural references to the same children (DUPLICATE
-- would create a new set of identical children).

procedure concat(
onto : in out sequence-type;
from : in out sequence-type);
-- Removes all outgoing links from ONTO, concatenating them
-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function is-empty(seq : in sequence-type) return boolean;
-- Are there any outgoing links from SEQ?

end sequence-node-pkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpduser defined." This generic subpackage allows the
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-- user to create GPD nodes that can contain any user-defined type.
-- Each operation will ensure that its arg is of class "gpduser defined,"
-- as well as ensuring that it contains data of the correct user-defined
-- type. The exception GPDERROR will be raised otherwise.

generic
type user_defined_data is limited private;
with procedure initialize(data : in out userdefined-data);
with procedure finalize(data in out user_defineddata);
with procedure swap(left in out userdefined-data;

right in out userdefined_data);
with procedure read(file in text_io.ffle-type;

data in out user_defined_data);
-- The DATA parameter of READ is mode in out because
-- READ FINALIZEs the incoming value of DATA
-- before placing the result of the READ operation in it.

with procedure write(file in textio.file_type;
data in userdefined-data);

-- In effect, WRITE sends a "copy" of DATA to FILE.
package user_defined_nodepkg is

procedure newnode(data in out user_defineddata;
node in out gpd-type);

procedure access-data(node in out gpdtype;
data in out user_defined-data);

end userdefined_nodepkg;

-- Errors:
-- This package only defines one exception, GPD ERROR. This
-- exceprt .- .o' whenever a nodc clas-specific function
-- or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINTERROR is raised if NULLGPDNODE
-- is passed into a routine.

gpd-error exception;

private
type gpd-block(class nodeclass gpd-empty;

top-size natural 0;
bottomsize natural 0);

type gpd-type is access gpd-block;
nul._gpnode : constant gpdtype null;

end GPDpkg;
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5. GPD CONCEPT SPECIFICATION, AS SUGGESTED IN SECTION
6.4

with text io, basic type-support;
generic

type CommonNodeContents is limited private;
with procedure initialize(data: in out CommonNodeContents);
with procedure finalize(data: in out Common_Node_Contents);
with procedure swap(left in out CommonNodeContents;

right in out CommonNodeContents);

-- For saving and restoring a single object of type CommonNodeContents:
with procedure save(file in textio.ilejtype;

data in CommonNode_Contents);
with procedure restore(file in textjio.fletype;

data in out CommonNodeContents);

-- For saving and restoring a group of CommonNodeContents objects that might be I
-- interconnected (in order to recover the intercornections):

type CNCSaveState is limited private;
with procedure initialize(data: in out CNCSaveState);
with procedure finalize(data : in out CNC_SaveState);
with procedure swap(left in out CNCSaveState;

right in out CNCSaveState);

type CNCRestoreState is limited private;
with procedure initialize(data : out CNCRestoreState);
with procedure finalize(data: in out CNC_Restore_State);
with procedure swap(left in out CNCRestoreState;

right in out CNC_RestoreState);

with procedure prepare-toread-group(
file in text_io.fle-type;
readstate in out CNCRestoreState);
-- This routine is called before a group of objects of type
-- CommonNodeContents will be read from the specified FILE.
-- This opportunity can be used to initialize the READSTATE,
-- and then load any information that was previously stored about
-- the group as a whole into the into that state variable.

with procedure read-one of a_group(
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file in text_io.ffle_type;
read_state in out CNCRestoreState;
data in out CommonNodeContents);
-- The DATA parameter of READ is mode in out because READ
-- FINALIZEs the incoming value of DATA before placing the

-- result of the READ operation in it.
with procedure finishreadingof.group(

readstate : in out CNCRestoreState);
-- This routine is called once the reading of a group of objects

-- of type CommonNodeContents has been completed. This allows

-- the READE STATE to be cleaned up and finalized.

with procedure prepare-to-writegroup(
write-state : in out CNCSaveState);
-- This routine is called before a group of objects of type

-- Common Node Contents will be written to a file. It allows the

-- WRITE STATE, used for representing structural sharing
-- information, to be initialized.

with procedure write_marked_element(
file in textio.fle.type;
writestate in out CN _SaveState;
data in Common.Node_Contents);
-- In effect, this routine sends a "copy" of DATA to FILE.

with procedure fmnish_writing.group(
write_state : in out CNC_Save_State);
-- This routine is called once the writing of a group of objects
-- of type CommonNode Contents has been completed. This allows
-- the WRITESTATE to be cleaned up and finalized.

package GPD-pkg is

-- For use in single-threaded applications where concurrency

-- protection for memory management is NOT necessary.

type node-slass is (gpdempty,
gpdjinteger,
gpdboolezn,
gpd.parent,
gpd-sequence,
gp!userdefined);

-- The type NODECLASS is left unencapsulated for simplicity

type gpdtype is limited private;
-- The basic operations for this type:

procedure initialize(node" out gpltype);
-- ensures that NODE = NULL GPDNODE
-- (NULLGPDNODE is the initial value for all elements of this
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-- type).
procedure finalize(data : in out gpdjype);

-- If NODE is referenced from multiple locations, this reference
-- is set to NULLGPDNODE. If this is the last remaining reference
-- to NODE, then storage for NODE is reclaimed, and NODE is given
-- the initial value, NULLGPDNODE.

procedure swap(left . in out gpdtype;
right in out gpdtype);

-- exchanges the contents of left and right
procedure duplicate(original in gpd-type;

copy in out gpdtype);
-. DUPLICATE FINALIZE COPY first, then creates an identical
-- copy of the ORIGINAL (including recursively copying all
-- nodes pointed to by outgoing links--cycles are detected,
-- and replicated appropriately).

null_Ngpdnode : constant gpdtype; -- the initial value for this type

-- The following 4 routines are common to all node classes.
-- They include functions to determine the class of a node,
-- to access the CommonNodeContents slot of any node, and to save
-- or restore a GPD node to or from a file.
-- These functions are followed by 5 subpackages, one for
-- each node class. Each subpackage defines the node-class-specific
--functions and procedures for a give node-class. Note that some
-- routines are overloaded (like "new node", etc.) if the
-- desired node-class can be determined from the argument profile,
-- but ambiguous cases (like "new node"for generating a
-- gpdsequence vs. a gpd empty) are given distinct names so
-- they do not have to be qualified with subpackage names.

function nodeclass_of(node: in gpd type) return node-class;

-- The FREE routines in the previous versions are replaced by
-- the FINALIZE routine above.

procedure accesscontents(node in out gpdtype;
data in out CommonNodeContents);

-- Exchanges the value (via a call to the appropriate SWAP)
-- of DATA with the value of the CommonNodeContents slot of
-- NODE.

-- For saving and restoring a single GPD structure:
procedure save(file in text_io.fletype;

gpd in gpdtype);
procedure restore(file in textio.filejtype;
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gpd in out gpd.type);

-For saving and restoring a group of GPD structures that might be
-interconnected (in order to recover the interconnections):

-Saving:

-Note that save/restore state objects cannot be copied or
-compared, since those capabilities are not appropriate for
-such state-holding objects.

type GPD save_state is limited private;
procedure initialize(data: out GPD save state);
procedure flnalize(data : in out GPD-save-state);
procedure swap(left :in out GPD -save-state;

right :in out GPD-save-state);

type GPD-estore-state is limited private;
proceduri initialize(data : out GPD -restore-state);
procedure flnalize(data: in out GPD-restore..state);
procedure swap~left in out GPD -restore-state;

right in out GPD_restorestate);

-- basic operations omitted for simplicity
procedure prepamejowite..group(

save-state : in out GPD-save state);
procedure write-marked-element(

file in text -io.fl~e type;
save-state :in out GPD_save -state;
data :in CommonNodeContents);

procedure finish-writing-group(
save-state : in out GPD-save state);

-- Restoring:
procedure pmreao.read-group(

file : in textio.flle-type;
read-state : in out GPD _save..state);

procedure read-one-of-a.group(
file :in text-io.flle-type;
read-state :in out GPD -save-state;
data in out gpd type);

procedure finish-reading-of...group(
read-state : in out GPD-save..state);

--------- -------------------------------
-- This subpackage defines the functions available for gpd nodes
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-- of class "gpd empty." Each operation will ensure that its arg
-- is of class "gpd empty," raising GPDERROR if otherwise.

-- A node of class "gpdempty" has no outgoing nodes, and
-- no slots other than one to hold CommonNodeContents.

package empty._nodepkg is
procedure new_empty__node(node in out gpd_type);

-- Makes sure rODE is finalized, then replaces it
-- with a node oj Jlass "gpdempty", which can still
-- hold CommonNodeContents data.

end emptynodepkg;

-- The routines in the following 2 packages use the SWAP
-- routines from the package BASICTYPESUPPORT to "access"
-- the internal contents oj each node-class (gpdinteger and
-- gpd boolean). This isn't strictly necessary for these
-- types (which may not be strongly encapsulated), but does
-- serve as an example of how strongly encapsulated types
-- would be treated.

-- In each case, an "access" routine replaces both the GETDATA
-- and PUTDATA routines found in other versions of this package.
-- If duplication of internal data were required by the user,
-- he could use the appropriate COPY or DUPLICATE routines
-- exported by BASIC TYPESUPPORT (or whatever package defined
-- the type under consideration).

-- This subpackage defines the functions available for gpd nodes
of class "gpd integer." Each operation will ensure that its arg

-- is of class "gpdinteger," raising GPDERROR if otherwise.

package integer-node pkg is
procedure newnode(data in integer,

node in out gpd_type);
procedure accessdata(node in out gpdtype;

data in out integer);
end integer__nodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpdboolean." Each operation will ensure that its arg
-- is of class "gpd boolean," raising GPDERROR if otherwise.
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package boolean-nodepkg is
procedure newnode(data in boolean;

node in out gpd-type);
procedure accessdata(node in out gpd-type;

data in out boolean);
end booleannode-pkg;

...................................................................

-- This subpackage defines the functions available for gpd nodes
-- of class "gpd_parent." Each operation will ensure that its arg
-- is of class "gpd_parent," raising GPDERROR if otherwise.

-- A node of class "gpdparent" has an ordered list of children. The
-- length of this list is determined by the parameter to
-- MakeEmptyParentNode when the node was first created. The
-- children (some of which may be NullGPDNodes) may be accessed
-- in any order by their relative positiions from the beginning of
-- the list.

package parent-node-pkg is
procedure makeempty-parent-node(

n in positive := 2;
node in out gpd type);

function maxchildren(node : in gpdtype) return natural;
-- This routine remains a function, and relies on the
-- COPY routine exported by BASIC TYPESUPPORT. The user
-- can't "access" the number of children--it must be read-only
--from his point of view.

procedure accesschild(
childnode in out gpd type;
parentnode in out gpd-type;
position in positive);
-- Remember, this replaces_ the value of the Nth
-- outgoing link with the value of CHILDNODE, and
-- replaces the value of CHILDNODE with the value of
-- the Nth outgoing link (a "swap").

procedure put-child(
child-node in gpd-type;
parentnode in out gpd-type;
position in positive);
-- Rather than "swapping", this does what you would
-- expect: it "links" the Nth outgoing link of the
-- PARENT NODE
-- to the CHILDNODE. This is a "restricted"form of
-- aliasing, which is completely under the control of
-- this module (i.e., not visible or accessible to the
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-- end user).
end parent-nodepkg;

-- This subpackage defines the functions available for gpd nodes
-- of class "gpi'_sequence." Each operation will ensure that its arg
-- is of class " fpd sequence," raising GPDERROR if otherwise.

-- A sequence node contains an arbitrarily long list of child
-- nodes, which may themselves be other sequences. These children
-- can be accessed, and the list of children modified, by the
-- subroutines in this package.

package sequencejnodepkg is
subtype sequencestype is gpd-type;

-- This subtype is just used for clarity in the
-- declarations below to show where a node of class
-- "gpd sequence" is expected. If a node of a different
-- class is used where this subtype appears, GPDERROR
-- will be raised.

procedure make empty-sequence-node(node : in out gpd-type);
-- Create a new gpd sequence node with no outgoing links.

-- Rather than "swapping", these operations introduces structural
-- sharing semantics. They "link" the corresponding outgoing link
-- of the SEQUENCENODE to the CHILDNODE given in the
-- argument (or remove such a link). This is a "restricted"form
-- of aliasing, which is completely under the control of this
-- module (i.e., not accessible to the end user).

procedure append(
seq in out sequence-type;
newelement in gpd-type);
-- adds a new outgoing link to the end of SEQ's
-- list of links, then places a reference to the NEWELEMENT
-- in this outgoing link.

procedure removehead(
seq in out sequencetype;
head in out gpd-type);
-- removes the first outgoing link on SEQ's list, and
-- returns the object pointed to by that link.

procedure prepend(
seq in out sequence-type;
newelement in gpd-type);
-- like APPEND, but for the beginning of the list.

procedure remove-tail(
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seq in out sequence-type;
tail out gpttype);
-- like REMOVEHEAD, but for the end of the list.

procedure accessnth -element(
seq in out sequence-type;
element in out gpd-type;
N in positive:= 1);
-- "Swaps" the node pointed to by the Nth outgoing link with
-- the current value of ELEMENT.

procedure consume(
seq in out sequence-type;
N in positive:= 1);
-- Removes the Nth outgoing link from the list. FINALIZE is called
-- on the contents before the link is removed.

procedure consume n elements(
seq in out sequence-type;
N in positive);
-- Removes the first N outgoing links from the list. FINALIZE is
-- called on the contents of each link before it is removed.

function length(seq : in sequence-type) return natural;
-- Returns the number of outgoing links.

procedure reversesequence(seq : in out sequence-type);
-- Reverses the order of the list of outgoing links.

procedure copy(
original in sequence-type;
duplicate in out sequence-type);
-- Produces a new node of class "gpdsequence" with an
-- identical list of outgoing links. Unlike the DUPLICATE
-- operation, however, both the ORIGINAL and the DUPLICATE conceptually
-- share structural references to the same children (DUPLICATE
-- would create a new set of identical children).

procedure concat(
onto in out sequencetype;
from in out sequence-type);
-- Removes all outgoing links from ONTO, concatenating them
-- onto FROM's list of outgoing links. At completion,
-- ONTO will have an empty list of links.

function issempty(seq : in sequence-type) return boolean;
-- Are there any outgoing links from SEQ?

end sequence.nodepkg;

-- This subpcckage defines the functions available for gpd nodes
-- of class "gpduser defined." This generic subpackage allows the
-- user to create GPD nodes that can contain any user-defined type.
-- Each operation will ensure that its arg is of class "gpd userdefined,"
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-- as well as ensuring that it contains data of the correct user-defined
-- type. The exception GPDERROR will be raised otherwise.

generic
type userdefineddata is limited private;
with procedure initialize(data : in out userdefined-data);
with procedure finalize(data : in out user defined_data);
with procedure swap(left in out userdefined-data;

right in out userdefineddata);

-- For saving and restoring a single object of type UserDefinedData:
with procedure save(file in text-io.fletype;

data in UserDefinedData);
with procedure restore(file in textio.fflejtype;

data in out UserDefinedData);

-- For saving and restoring a group of User Defined-Data objects that might be
-- interconnected (in order to recover the interconnections):

type UDDSaveState is limited private;
with procedure initialize(data : out UDDSave_State);
with procedure finalize(data: in out UDDSaveState);
with procedure swap(left in out UDDSave State;

right in out UDDSaveState);

type UDDRestoreState is limited private;
with procedure initialize(data• out UDDRestore.State);
with procedure finalize(data : in out UDDRestoreState);
with procedure swap(left in out UDDRestore_State;

right in out UDDRestoreState);

with procedure prepare_to_readgroup(
file in text_io.fle_type;
readstate in out UDDRestoreState);
-- This routine is called before a group of objects of type
-- User Defined Data will be read from the specified FILE.
-- This opportunity can be used to initialize the READ STATE,
-- and then load any information that was previously stored about
-- the group as a whole into the into that state variable.

with procedure read-onesof agroup(
fie in textio.filetype;
read-state in out UDDRestore-State;
data in out user-defineddata);
-- The DATA parameter of READ is mode in out because READ
-- FINALJZEs the incoming value of DATA before placing the
-- result of the READ operation in it.

with procedure finishreading-of-group(
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readstate : in out UDDRestoreState);
-- This routine is called once the reading of a group of objects
-- of type User Defined Data has been completed. This allows
-- the READESTATE to be cleaned up and finalized.

with procedure prepare towritegroup(
writestate : in out CNCSaveState);
-- This routine is called before a group of objects of type
-- User DefinedData will be written to a file. It allows the
-- WRITESTATE, used for representing structural sharing
-- information, to be initialized.

with procedure writemarkedelement(
file in textio.filetype;
write-state in out CNCSaveState;
data in userdefined-data);
-- In effect, this routine sends a "copy" of DATA to FILE.

with procedure finish-writing.group(
write_state : in out CNCSaveState);
-- This routine is called once the writing of a group of objects
-- of type User Defined Data has been completed. This allows
-- the WRITESTATE to be cleaned up and finalized.

package userdefinednodepkg is

procedure newnode(data in out userdefineddata;
node in out gpd-type);

procedure access-data(node in out gpdjtype;
data in out userdefined_data);

end userdefinednodepkg;

- Errors:
-- This package only defines one exception, GPDERROR. This
-- exception is raised whenever a node-class-specific function
-- or procedure is called with an argument of the wrong class.
-- The exception CONSTRAINT ERROR is raised if NULL_GPDNODE
-- is passed into a routine.

gpd-error exception;

private
type gpd-block(class nodeclass gpd-empty;

top__.size natural 0;
bottomsize •natural 0);

type gpd-type is access gpd.block;
null__gpd_node : constant gpd-type null;
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type gpc-save-block;
type gpdsave -state is access gpd-save -block;
nullgSpd-save-state :constant gpc-save..State :=null;

type gpd-estore-block;
type gpd-restore-state is access gpd-restore -block;
null..gpdrestore_state :constant gpd-restore_state :=null;

end GPD...pkg;
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6. PROCEDURE VARIABLE CONCEPT

generic
type arg_type is limited private;
with procedure initialize(data : in out arg.type);
with procedure finalize(data: in out arg_type);
with procedure swap(left in out arg-type;

right in out arg-type);
package ProcedureVariableAbstraction is

type procedurevariable is limited private;
procedure initialize(data: in out procedurevariable);

-- This initializes a procedure variable to the conceptual
-- value "NULL." This must be executed for each procedurevariable
-- declared.

procedure finalize(data : in out procedurevariable);
-- This releases all resources associated with a procedure variable.
-- It must be executed on each procedurevariable before that
-- variable goes out of its defining scope.

procedure swap(left in out procedurevariable;
right in out procedure_variable);

function procedure_variable is-.null(pv : in procedure variable)
return boolean;
-- Return TRUE iff PV has the conceptual value "NULL,"
-- return FALSE otherwise.

procedure resetprocedure-variable(pv : in out procedure-variable);
-- Sets a procedure variable to the conceptual value "NULL."
-- This routine is most often used to "erase" the value of
-- a used procedure variable.

generic
with procedure P(a : in out arg-type);
-- P should not access any variables outside itself (eitner
-- global variables or variables in surrounding transient
-- scopes).

package ProcedureDefiner is

procedure set-procedure variable_to_P(pv : in out procedure variable);
-- Sets PV to conceptually "point to" the procedure P.
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end ProcedureDefiner,

procedure invokejprocedure(pv in procedure variable;
a in out argtype);

-- If PV has the conceptual value "NULL," no action is taken.
-- If PV "points to" some procedure P, P is invoked with
-- A as its argument.

UNRTNALD_PV• exception;
-- This exception is raised if a variable of type PROCEDUREVARIABLE
-- is declared and then passed to an operation before INITIALIZE
-- has been called on it.

private
type pvblock;
type procedure-variable is access pv-block;

end ProcedureVariableAbstraction;
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7. PROCEDURE VARIABLE CONTENT USING TASKING

with unchecked_deallocation;
package body ProcedureVariableAbstraction is

task type gobetween-type is
entry in-args (a in out argtype);
entry out-args (a2 in out arg_type);
entry retum-args(a3 in out argtype);

end go-betweentype;

type procedure-jype is access go betweentype;
nul._procedure : proceduretype:= null;
type pv.block is record

pv : procedure-jype := nullprocedure;
end record;

procedure initialize(data: in out procedure-variable) is
begin

if data /= null then
finalize(data);

end if;
data:= new pv..block'(PV => null-procedure);

end initialize;

procedure finalize(data: in out procedurevariable) is
procedure free is new uncheckeddeallocation(

pvblock, procedure-variable);
begin

if data /= null then
free(data); -- assigns data = null after deallocating space

else
raise UNITAL/ZEDPV;

end if;
end finalize;

procedure swap(left in out procedurevariable;
right in out procedure-variable) is

temp : procedure-variable:= left;
begin

-- The normal "swap" implementation. Note that it runs
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-in "constant" time, regardless of the size of a
-PVBLOCK, so the representation of a procedure variable
-can be altered without affecting its efficiency.

left: right;
right: temp;

end swap;

function procedure..yariable-is-null(pv : in procedure-vari able)
return boolean is

begin
if pv = null then

raise UNFhUTIALZEDPV;
else

return pv.pv = nuli..procedure;
end if;

end procedure_variable_is_ null;

procedure reset..procedure-variable(pv in out procedure vari able) is
begin

if pv = null then
raise IJNINIAUZEDPV

else
pv.pv := null-procedure;

end if;,
end reset-procedure..yariable;

package body ProcedureDefiner is

task shell is
entry receive-gojetween(gb-holder: in procedure..sype);

end shell;

go-between : procedure-type := new go-betweenjtype;

procedure set...procedure variable-toP(pv : in out procedure-variable) is
begin

if pv = null then
raise UNINTrIALIZED-PV;

end if;
pv.pv : = go-between;,

end set-procedure-variablejtoy;

task body shell is
gb :procedure-type;
a :arg-type;

begin
initialize(a);, -- set it to a valid initial value
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accept receive-go..between(gb_holder: in procedurejtype) do
gb:= gb holder

end receivego~ietween;
loop

-- swap the requested argument value into A
gb.out args(a);
-- invoke the actual procedure
p(a);
-- swap the (possibly altered) value back to the caller
gb.retum-args(a);

end loop;
-This point is unreachable, but for completeness,
-clean up when done:

finalize(a);
end shell;

begin
shell.receive..goibetween(gojetween);

end ProcedureDefiner,

procedure invoke-procedure(pv :in procedure~vari able;
a :in out arg-type) is

begin
if pv = null then

raise UNINITALIZED PV;
elsif pv.pv /= null-procedure then

pv.pv.in-args(a);
end if;

end invokeprocedure;

task body go between-jype is
begin

loop
accept in-args(a : in out arg-type) do

-- accept input to procedue P
accept out-args(a2 : in out arg-type) do

-- put P's arg into a2 so SHELL task can see it
swap(a2, a);

end out-args;
accept returnargs(a3 : in out arg-type) do

-take output from SHELL task and put it back
-in A to be passed back to INVOKE-PROCEDURE.

swap(a, a3);
end return-args;

end in-args;
end loop;

end go-betweenjtype;
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end ProcedureVariable_Abstraction;
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8. PROCEDURE VARIABLE CONTENT USING INTERFACE
PRAGMA

with system, uncheckedconversion, uncheckeddeallocation;
package body Procedure_VariableAbstraction is

type arg-type-ptr is access arg-type;
subtype procedure-type is system.address;
nulLproc : integer:= 0;
nullprocedure : constant procedure-type := null-proc'address;
type pvblock is record

pv : procedure-type:= nullprocedure;
end record;

procedure initialize(data : in out procedure_variable) is
begin

if data/-= null then
finalize(data);

end if;
data:= new pvjblock'(Pv => null_procedure);

end initialize;

procedure finalize(data : in out procedure-variable) is
procedure free is new unchecked_dealocation(

pv-block, procedure-variable);
begin

if data/= null then
free(data); -- assigns data = null after deallocating space

else
raise UNINITIALIZEDPV;

end if;
end finalize;

procedure swap(left in out procedure.variable;
right in out procedure-vriable) is

temp : procedure variable := left;
begin

-- The normal "swak" iplementation. Note that it runs
-- in "constant" time, regardless of the size of a
-- PVBLOCK, so the representation of a procedure variable
-- can be altered without affecting its efficiency.
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left := right;
right := termp;

end swap;

function procedure-variableis-null(pv :in procedure_v ari able)
return boolean is
use system;

begin
if pv = null then

raise UNINITALIZED-PV
else

return pv.pv = null-procedure;
end if;

end procedure-variable-is-null;

procedure reset-procedure-yariable(pv in out procedure-vari able) is
begin

if pv = null then
raise UNIRrflALzED-PV;

else
pv.pv := null-procedure;

end if;
end reset-procedure-variable;

package body Procedu reDe finer is

procedure pykrapper(aa : in system.address) is
function from-sa is new unchecked-conversion(

system.address, arg-type-ptr);
a : arg-type..ptr: from-sa(aa);

begin
p(a.all);

end p-wrapper,

procedure setprocedure..aahlejqj-(pv :in out procedure-vari able) is
begin

if pv = null then
raise UNINITIALIZED_PV;

end if-,
pv.p,, := p-wrappcr'address,

end set-proccdure-variable-toP;

end Proced ureDe finer,

procedure invoke-procedure(pv in procedure-vari able,
a in out argjtypc) is

procedure c-invoke-hook(a :in system.addrcss;
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C Procedure Variables

p :in system.address);
pragma interface(c, c invoke-hook);
use system;

begin
if pv = null then

raise uNTNrflALZED-PV;
elsif pv.pv /= null-procedure then

c-invoke hook(a'address, pv.pv);
end if,

end invoke-procedure;

end ProcedureVariableAbstraction;
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9. C PROCEDURE VARIABLE INVOCATION USED BY PRO-
CEDUREVARIABLEABSTRACTION PACKAGE

void c invokehook(a, p)
int *a;

void (*p)O;

(*p)(a)1
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10. PROCEDURE VARIABLE CONCEPT WITH SHARED
"ENVIRONMENTS"

generic
type arg-type is limited private;
with procedure initialize(data : in out arg_type);
with procedure finalize(data in out argtype);
with procedure swap(left in out arg-type;

right in out arg-type);
package ProcedureVariablewithEnvAbstraction is

type procedurevariable is limited private;
procedure initialize(data : in out procedure-variable);

-- This initializes a procedure variable to the conceptual
-- value "NULL." This must be executed for each procedurevariable
-- declared.

procedure finalize(data : in out procedure_variable);
-- This releases all resources associated with a procedure variable.
-- It must be executed on each procedurevariable before that
-- variable goes out of its defining scope.

procedure swap(left in out procedurevariable;
right in out procedure variable);

function procedurevariableisnull(pv : in procedurevariable)
return boolean;
-- Return TRUE iff PV has the conceptual value "NULL,"
-- return FALSE otherwise.

procedure reset-procedure variable(pv : in out procedure variable);
-- Sets a procedure variable to the conceptual value "NULL."
-- This routine is most often used to "erase" the value of
-- a used procedure variable.

generic
type environmenttype is limited private;
with procedure initialize(data : in out environment_type);
with procedure finalize(data : in out environment-type);
with procedure swap(left in out environmenttype;

right in out environmenttype);

with procedure p(a in out arg-type;
e in out environmenttype);
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package ProcedureDefiner is

procedure set_procedurevaiable_to_P(
pv in out procedurevariable;
e in out environmenttype);
-- Sets PV to conceptually "point to" the procedure P.
-- Also takes the environment E and puts it in PV (upon
-- completion, E has the value given by "initialize").
-. Whenever PV is invoked, P will be called with E as
-- one of its parameters.

procedure access-procedure environment(
pv in out procedurevariable;
e in out environment_type);
-- "Swaps" E with the environment stored in PV.

end ProcedureDefiner,

procedure invokeprocedure(pv in procedure__variable;
a in out arg-type);

-- Invokes the procedure "P" which PV "points to," passing
-- it the argument A and the procedure environment stored
-- in PV.

private
type pvblock;
type procedurevariable is access pvblock;

end ProcedureVariablewithEnvAbstraction;
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11. UNIDIRECTIONAL ASSOCIATIVE MEMORY CONCEPT
FROM SECTION 6.3.1

generic
type Domain-Type is limited private; -- the domain of the associative map
with procedure Swap(left, right: in out DomainType);
with procedure Initialize(d : in out DomainjType);
with procedure Finalize(d : in out Domain_Type);
with procedure Copy(from : in Domain-Type;

into : in out DomainType);
with function IsEqual(left, right : in Domain-Type) return boolean;

type Range-Type is limited private; -- the Range of the associative map
with procedure Swap(left, right: in out Range-Type);
with procedure Initialize(r: in out RangefType);
with procedure Finalize(r: in out Range-Type);
with procedure Copy(from : in Range_Type;

into : in out RangeType);
with function IsEqual(left, right: in RangeType) return boolean;

package UnidirectionalAssociativeMemoryConcept is

Type UAM-map is limited private;
-- basic operations defined for every type
procedure Swap(left, right: in out UAMmap);
procedure Initialize(m : in out UAM.map);
procedure Finalize(m : in out UAMmap);
procedure Copy(from : in UAMmap;

into : in out UAMmap);
function IsEqual(left, right: in UAM_map) return boolean;

--primary operations for UAMmaps
procedure get-default(m : in UAM_map;

r : in out Range-Type);
-- The value of R when the call is made is finalized; then a copy
-- of the default value of M is placed in R. M is not affected.

function isconstant(m : in UAMmap) return boolean;
-- Returns false if there exists a D in Domain Type such that
-- M(D) /= GETDEFAULT(M).
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Unidirectional Associative Memory

function isnotdefault(m in UAM_map;
d in DomainType) return boolean;

-- Returns true iff M(D) /= GET DEFAULT(M) (i.e., if D has been
-- entered into the map M).

procedure reset(m in out UAM.map;
r in out Range-Type);

--finalizes all the old values in M, and resets it so that R is
-- the new default value for M. The original default value for
-- M is also finalized, and on exit R has been "consumed" and
-- contains the value of a newly initialized RangeType variable.

procedure access(m : in out UAM.map;
d An DomainType;
r : in out Range-Type);

-- The map M is applied to the value D (D is used to "index" into
-- M). The resulting Range Type value is "swapped" with the value of
-- R. On exit, R contains the old value of M(D), and M(D) contains
-- the old value of R.

end UnidirectionalAssociativeMemoryConcept;
[Petcrson89a] [Suzuki82a] [Litvinchouk84a] [Goguen84b]
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